
Zend_Guard_User_Guidezzz.pdf

Zend GuardTM

w w w . z e n d . c o m

User Guide:

Zend Guard 5.0

By Zend Technologies, Inc.

Disclaimer

The information in this document is subject to change without notice and does

not represent a commitment on the part of Zend Technologies Ltd. No part of this

manual may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or information

storage and retrieval systems, for any purpose other than the purchaser’s

personal use, without the written permission of Zend Technologies Ltd.

All trademarks mentioned in this document, belong to their respective owners.

© 1999-2007 Zend Technologies Ltd. All rights reserved.

Zend GuardTM User Guide issued December 2007

Product Version: Zend GuardTM 5.0.1

DN: ZG-UG-120407-5.1-004

Contribute to the Documentation

Your feedback is important to us. Therefore, at the bottom of each page is a link

for sending e-mails directly to the Zend documentation team.

You can also let us know your views on Zend documentation by participating in

our Zend Documentation Satisfaction survey.

Table of Contents

Zend Guard ..6

Contribute to the Documentation ..7
Introduction ..8

Installing Zend Guard..9
Launching Zend Guard .. 11
Registering Zend Guard... 12
Zend Guard Features .. 14
Workspace Overview... 16
Menu Options... 21

Working with Zend Guard..25
Getting Started .. 26
Modifying Project Contents... 30
Basic Tutorial ... 32
Preferences ... 35
Overriding Project Preferences.. 37
Configuring the Integration with Zend IDE ... 38
Importing an Existing Project ... 39
Path Variable Preferences .. 41
Editing Path Variables ... 42

Tabs ..44
Overview Tab... 45
Security Tab .. 48
Exclude Tab... 51
Excluding PHP Entities ... 55
Header Tab.. 58
XML Editing Tab ... 60

Encoding ...62
Encoding ... 62
How to Encode ... 64
Distributing Encoded Files .. 65
Manual Encoding .. 65

Obfuscation ...66
Encoding Only.. 68
Variable Obfuscation ... 68
Function Obfuscation... 68

iv

Table Of Contents

Testing and Debugging Applications .. 69
Licenses ..69

Creating a License .. 69
License Files .. 78
Installing a License File ... 79
License Enforcement ... 80
License File Location ... 81
Zend Host ID ... 82
License Architecture and Behavior... 84

Command Line...87
zendenc and zendenc5 – Command Line .. 87
zendenc - Command Line Examples .. 92
Creating a Signature License (Command Line) .. 93
zendenc_sign – Command ... 96

Zend Guard API ...98
FAQ ...102

Index ...107

v

Zend Guard

Disclaimer

The information in this document is subject to change without notice and does

not represent a commitment on the part of Zend Technologies Ltd. No part of this

manual may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or information

storage and retrieval systems, for any purpose other than the purchaser’s

personal use, without the written permission of Zend Technologies Ltd.

All trademarks mentioned in this document, belong to their respective owners.

© 1999-2007 Zend Technologies Ltd. All rights reserved.

Zend GuardTM User Guide issued December 2007

Product Version: Zend GuardTM 5.0.1

DN: ZG-UG-120407-5.1-004

6

Zend Guard

Contribute to the Documentation

Your feedback is important to us. Therefore, at the bottom of each page is a link

for sending e-mails directly to the Zend documentation team.

You can also let us know your views on Zend documentation by participating in

our Zend Documentation Satisfaction survey.

7

Zend Guard User Guide

Introduction

Zend GuardTM is the first Electronic Licensing solution for the PHP marketplace. It

includes the Encoding solution that pioneered PHP intellectual property protection.

Unprotected intellectual property, in the form of plain text PHP scripts and

software without license restrictions, can be copied, modified, and retained by

someone else. It is available to your competitor, to hackers and even to

developers at customer sites.

Zend GuardTM provides tools that significantly lessen risk to your intellectual

property. It is designed to prevent your property from being viewed or modified.

Software piracy losses run in the billions. Estimates place it at $59 billion in the

last five years. This translates into lost opportunities and diminished sales.

Zend Guard maximizes software profitability by:

 Limiting unauthorized duplication or use of your applications.

 Ensuring that only licensed customers use your products and that they

remain within the terms of your license.

 Offering flexible licensing terms that make your software products more

attractive, increase sales, and improve customer satisfaction.

 Increasing conversion rate from evaluation to licensed product.

 Preventing other people from changing your code (all files are rendered as

un-editable and external changes will corrupt the code) protecting the files

against external tampering.

8

Zend Guard

Installing Zend Guard
Installation is initiated either by downloading the product from zend.com or by

the Zend IDE during its installation (it will install from the web).

Regardless of installation method, Zend Guard provides a standalone solution for

encoding files as well as electronic licensing for protecting intellectual property.

System Requirements

To view the Zend Guard system requirements, go to:

http://www.zend.com/products/zend_guard/system_requirements

Please note that some requirements may change from time to time.

Version Compatibility

 Encoded files which have obfuscated local variables are only compatible

with Zend Optimizer version 2.6 and above.

 Encoded files which have obfuscated variables and also have obfuscated

functions, classes and/or PHP Internal symbols require the latest

version of Zend Optimizer (PHP4 Optimizer 3.0 and above; PHP5

Optimizer 3.3 and above).

 Encoded files can be used with PHP 4.3 or greater.

 Obfuscation of entities other than local, requires that the latest version of

Zend Optimizer be installed. The Zend Optimizer is available for download

free of charge, from the Zend Store, at: http://www.zend.com/store.

 PHP files encoded with Zend Guard 4.0 require Zend Optimizer 3.0 (or

greater) in order to run. Encoded files can be used with PHP 4.3 (or

greater).

Note:

Newer PHP language features and constructs should be run on PHP versions that

support them. This is true for both encoded and non-encoded PHP files.

9

Zend Guard User Guide

Extracting the Standalone Zend Guard

 Windows - Double-click on self-extracting archive, and follow the

instructions in the installation wizard.

 Linux - Extract the downloaded tar.gz file: ZendGuard-5_0_x.tar.gz. As

soon as the extraction is done, run the following extracted binary:

./ZendGuard-5_0_x.bin and follow the instructions in the installation

wizard.

 Mac - Extract the zip file double clicking on it. Double click on the archive

directory in order to start the Zend Guard installation executable and

follow the instructions in the installation wizard.

10

Zend Guard

Launching Zend Guard
Depending on the platform you are using, users can launch the Zend Guard:

 In a new Program Group

 In an existing Program Group

 In the Start Menu

 On the Desktop

 In the Quick Launch Bar

 Home directory

The choices determine how and from where you will be able to activate the Zend

Guard.

Zend IDE users can activate Zend Guard from the Zend IDE User interface (Tools

| Encode Project) or from the Shortcut Menu.

Installing Zend Guard via the Zend IDE installation adds additional integration

options. The integration enables users to open and edit encoded Files with Zend

IDE, directly from the Zend Guard.

Note:
These options are available even if the installation is not done the same time. The

only difference is that the integration settings are automatically configured

whereas; in separate installations these options have to be manually configured.

Installing the Zend Guard via the Zend IDE actually starts a separate download

and installation process.

 The Zend IDE Installer prompts the user to select to download the Zend

Guard or not.

 Selecting to install Zend Guard, adds a download request to the Zend IDE

Installer.

 Confirming the download request (clicking the download button) runs two

actions:

1. Starts to download the Zend Guard package from zend.com

2. When the download is completed, automatically runs the Zend Guard

installation process.

11

Zend Guard User Guide

Registering Zend Guard
This procedure describes how to register your Zend Guard product. PHP files can

be encoded with an unregistered product however, encoded files will not be

optimized and will be valid for 14 days, only.

License files that are generated with an evaluation version will be valid for 3 days,

only.

These limits provide sufficient time to fully evaluate all the Zend Guard features

in a fully functioning environment and test the encoding capabilities.

In order to benefit from full Zend Guard capabilities the product should be

registered.

Before registering your product make sure you have your registration information

or license file available. A license file is a file that contains product activation

information. Without this file the registration process will not succeed.

To Register Zend Guard:

1. Go to Help | Register.

The registration Dialog will open.

Figure 1 - Registration Dialog

2. Choose one of the registration options:

 Download a license file. Obtain a license file from

www.zend.com.

Select this option:

• If you want to download a license file from www.zend.com

12

Zend Guard

• If you do not have a local copy of a license file on your

computer.

• Registration Dialog Options

o Username - Your zend.com user name (not your e-mail).

If you do not remember your Zend user name please

contact sales@zend.com". You can also create a license file

from your Pickup Depot,

https://www.zend.com/store/pickup.php".

o Password Your zend.com password

o Serial Number the product purchase serial number as it

appears in the pickup depot,

http://www.zend.com/store/pickup.php

 Search for License file. Select this option, if you have a local

copy of a license file on your computer. You should register the

product by using a local copy of a license file when reinstalling the

product (or if a license file was sent directly to you by a Zend

representative).

Your product will now be registered and all validation restrictions will be removed.

If the restrictions persist or if the license is not accepted, please refer to our

Support Center for further information and assistance.

13

Zend Guard User Guide

Zend Guard Features
Zend Guard is the industry standard in PHP intellectual property protection. It

protects exclusive and commercial PHP applications by obfuscating PHP scripts.

Developers enjoy the benefits of a leading open-source language while protecting

PHP code when ready to distribute applications. By protecting applications,

Independent Software Vendors (ISVs) expand distribution and revenue on

maintenance and support.

Zend Guard includes three features to provide a double layer of

protection for PHP applications:

 Encoding

 Obfuscation

 Licensing

Encoding

Encoding converts PHP scripts from human-readable text files, to obscure binary

files, which contain platform-independent Zend Intermediate Code. It enables you

to distribute your application or your Web site's PHP scripts to end users working

off any platform supported by the Encoder, without disclosing your source code.

Business-oriented developers will find the Zend Encoder to be a mission-critical

part of management strategy for protecting the intellectual property of their

applications.

Encoded files can be read transparently by the Zend Optimizer™, which is

available for free at http://www.zend.com/store/.

Parts of the Zend Optimizer are also embedded in the Zend Encoder, so encoded

PHP scripts are optimized during the encoding process. This improves script

performance and makes reverse engineering more difficult.

14

Zend Guard

Obfuscation

Code Obfuscation lets Independent Software Vendors (ISVs), developers and

businesses improve intellectual property protection from reverse engineering by

obfuscating PHP source code.

Zend Guard enables the user to select the specific types of code elements to

obfuscate; you can use Zend Guard to:

Remove:

 PHP DocBlocs

 Line Numbers

Obfuscate:

 Variables

 Functions

 Classes

 PHP Internal Functions

Note:
Code components (specific functions, function calls, concatenations, etc.,) that

are added to the Exclude List will not be obfuscated.

Zend Guard supports the latest industry standard with full support for PHP 5.2x.

Licensing

Zend Guard's Licensing feature enable ISVs to manage the commercial

distribution of their PHP applications by generating license keys and creating files

that require a license key to operate. This protects code from copyright

infringement. Software vendors can easily specify license models without

changing their application's source code.

Applications will not run unless the proper software license is found.

15

Zend Guard User Guide

Workspace Overview
Zend Guard's user interface is organized into 3 views (Guard Explorer, Project

Editor and Monitoring). The Explorer is used to navigate through Zend Guard

project files; the Project Editor is used to set and edit project configurations; the

monitoring view displays editing issues while they occur and system messages

when encoding projects.

Figure 2 - Zend Guard GUI

16

Zend Guard

Guard Explorer

This view is organized in the form of a browser tree. It contains all of your Zend

Guard Projects, the projects' directories and the project files.

Figure 3 - Guard Explorer

17

Zend Guard User Guide

Project Area

The Project view is used to manage Zend Guard projects from a technical

standpoint. It is where the project is named, sources are added, encoding,

obfuscation and security parameters are set, etc.

Figure 4 - Project View

The Project view includes the following five tabs:

 Overview - Includes General Information regarding the application

(Product) that you are protecting via the Zend Guard as well as the Source

Options for the Product (PHP version, tag support, symlinks, files to

encode, patterns to ignore).

 Security - Used to set the options for Licensing, Encoding and Obfuscation.

 Exclude List - This is a list of code entities that should not be obfuscated.

You can enter names manually and can also have Zend Guard generate a

list of suggested entities that should not be obfuscated.

 Header Information - This enables you to insert meta information (e.g.,

copyright notice, version information, etc.) into your encoded application.

18

Zend Guard

It also enables you to customize the message is displayed if the Zend

Optimizer is not installed.

 XML Editor - The XML file contains all the information regarding the Zend

Guard project. The Zend Guard engine uses this file as the instruction

input; all obfuscation and related operations are based on the information

contained in this file. You may edit the file manually.

Figure 5 - Suggestion List

19

Zend Guard User Guide

Monitoring Area

The Monitoring Area view lists all Errors and Warnings in the Zend Guard Project

including an explanation of each, the specific file that generated each

error/warning and the line numbers within the file that caused the error/warning.

The area contains three tags:

• Console - displays system messages when encoding projects such as

encoding errors that occur in php files, the file name's description, error

line number and a link to the Zend IDE (if the IDE has been integrated see

"Configuring Integration with Zend IDE")

• Problems - displays XML validation issues in detail (including an

explanation and the specific line that generated each error/warning).

• Progress - shows progress for jobs that are running.

Figure 6 - Problem View

20

Zend Guard

Menu Options
Zend Guard Main Menu

This table lists the Main Menu and short-cut key options. These include Project,

Tools, and Help.

Menu Options Shortcut

Key

File New Open the New Project wizard Ctrl + N

 Save Save currently opened Projects

settings

Ctrl + S

 Save As Save current settings as a new project

(or overwrite an existing project that

is not currently open)

 Import Imports a Zend Guard Project

 Export Exports a Zend Guard Project

 Exit Closes the Zend Guard without losing

changes.

Alt + X

Edit Preferences Set default user interface and project

settings.

Project Configure Edit and set default project settings.

 Variables Map locations on the machine to the

project.

 Encode Start Encoding

Help Help Contents Opens the online help.

 Register Register the product.

 About View the current product's version

details.

21

Zend Guard User Guide

Zend Guard Toolbar

This table describes the Toolbar and Explorer icons.

Toolbar Icon Description

New Project - Opens the New Project wizard.

Save - Saves the current project.

Encode - Encodes the project.

Previous \ Next - Navigates between the previous and next files

or folders to be encoded in your project.

Refresh - Refreshes the current Views.

Collapse - Collapses the Project tree.

Filter - Displays the available filters.

Sort - Sorts files by Name or Type.

Right-Click Menu Options

The Management view enables several context sensitive right-click menu options,

listed below.

Projects

Place the cursor on a Zend Guard project and right click anywhere in the view to

open the following menu.

Menu Item Explanation

New* Opens a Wizard to create a new Project or a new

License.

Configure Moves focus to the Project view.

Path Variables Opens the "Configure Path Variables" dialog. Used for

adding and editing project path variables.

Encode Project Encodes the project and sends it to the target (output)

folder.

Rename Project Opens a dialog for changing the project's name.

Add Folder Browse to add a file folder to the project.

Add Files Browse to add individual files to the project.

Delete Deletes the project's target files and optionally, the

project's source files.

Close Project(s) Closes the Zend Guard project(s).

22

Zend Guard

Menu Item Explanation

Import* Imports a Zend Guard project (source files) or a project's

parameter files.

Export* Exports a Zend Guard project source files or the project's

parameter files.

Refresh View* Refreshes the project.

*Options available even when there are no Projects.

Folders

Place the cursor on a Zend Guard project folder and right click anywhere in the

view to open the following menu.

Menu Item Explanation

New Opens a Wizard to create a new Project or a new

License.

Configure Moves focus to the Project view.

Ignore Resource

(Don't Copy)

The resource will not be encoded or copied to the target

location

Exclude Resource

(Copy as is)

The resource will be copied to the target location as is

(not encoded)

Include Resource

(Encode & copy)

Appears only if one of the options "Ignore Resource" or

"Exclude Resource" have been applied to the folder.

Clicking "Include Resource", returns the folder to it's

original state (i.e. it will be encoded and copied to the

output location)

Import Imports a Zend Guard project (source files) or a project's

parameter files.

Export Exports a Zend Guard project source files or the project's

parameter files.

Edit Path Select a file and choose the edit option. This opens the

selected file for editing in Zend IDE (this option is only

available for imported resources).

Remove Source* Removes the folder from the project (this option is only

available for imported resources).

Refresh View Refreshes the project.

23

Zend Guard User Guide

Files

Place the cursor on a Zend Guard project file and right click anywhere in the view

to open the following menu.

Menu Item Explanation

New Opens a Wizard to create a new Project or a new

License.

Configure Moves focus to the Project view.

Open with Zend

IDE

Opens the selected file in Zend IDE for editing and

debugging code (available when the Zend IDE

integration is active and configured).

Ignore Resource

(Don't Copy)

The resource will not be encoded or copied to the target

location

Exclude Resource

(Copy as is)

The resource will be copied to the target location as is

(not encoded)

Include Resource

(Encode & copy)

Appears only if one of the options "Ignore Resource" or

"Exclude Resource" have been applied to the file.

Clicking "Include Resource", returns the file to it's

original state (i.e. it will be encoded and copied to the

output location)

Import Imports a Zend Guard project (source files) or a project's

parameter files.

Export Exports a Zend Guard project source files or the project's

parameter files.

Edit Path Opens the open File dialog to edit the path to the file

(this option is only available for imported resources).

Refresh Checks all the project files and folders to see if anything

was changed or deleted and updates the project files

(similar to refreshing the project files list).

24

Zend Guard

Working with Zend Guard

This section covers the following topics:

 Getting Started - How to create a project file.

 Modify Project Contents - How to add and remove files and folders from a

project.

 Basic Tutorial - How to define encoding/obfuscation and security settings.

 Preferences - How to set Project preferences.

 Overriding Project preferences - see how to change default preferences for

files and folders in the same project.

 Integration - How to configure the integration with the Zend IDE.

 Import - How to import Zend Guard 4 projects

 Path Variable Preferences - How to map file locations to handle several

contents under the same project.

 Editing Path Variables - How to edit the path variables.

25

Zend Guard User Guide

Getting Started
This procedure describes how to create a project for the first time. Projects are

used to define specific settings for a group of PHP files that represent a complete

PHP application. Projects are Projects are a collection of source inputs such as

files and paths of files to be encoded. Inside a project you can define the specific

encoding, obfuscation and license settings that will be applied to the files related

to the project. There are also additional options for excluding certain entities.

There are three main steps to encoding PHP files:

1. Creating a Project

2. Configuring Encoding and Obfuscation settings

3. Executing encoding and obfuscation on the project

To create a new project

1. Select the "Create New Project" icon to open the "New Project

Wizard.

Figure 7 - Project & License Wizard

2. Click Next to define the project's basic settings including:

 Project

• Name - The project name. Make sure the project name does not

26

Zend Guard

include spaces, use "_" as a separator if necessary.

• Contents - These are the files/folders that comprise the bulk of

the Zend Guard project.

 Product

• Name - The name of the (end) product.

• Version - The current version of the (end) product.

• Target directory - The directory that will hold the (end)

product files after creation by the Zend Guard. The target

directory must not be the same as the source directory.

Figure 8 - Initial Project Settings

3. Add the files and click Next. The Configure Source dialog will

open. Enter the Source configuration settings.

27

Zend Guard User Guide

Figure 9 - Configure Source Dialog

Figure 10 - Specify Source Path

4. In order to add an extension type (in this example - *.html), click

Add, enter the extension and click OK.

28

Zend Guard

5. Click Finish to create the project.

6. Click File | Save or click the Save icon and the new project

will be saved.

A new project will be added in the Guard Explorer section. Navigate through the

different tabs to configure the project's specific settings.

Note:

To create evaluation software that expires after a designated period of time, use

the license-file expiration options on the License tab.

29

Zend Guard User Guide

Modifying Project Contents
The following procedures describe how to modify project contents.

There are four main options for modifying content:

 Adding a folder to a Project

 Adding selected files to a Project

 Removing files and folders from a Project

 Ignoring and Excluding Resources

Before adding or removing files and folders it is important to know that:

 Single files or entire folders can to be encoded.

 Folder Structures are treated recursively - any files found in the

immediate folder or below, which match the Extensions to Encode

Definitions will be processed for encoding.

 The Copy Non-PHP Files option - copies files whose extensions are not

specified in Tools | General Settings, to the output directory. You should

evaluate the contents of the structures before you select Copy Non-PHP

Files as an encoding setting.

 Defined File Types are files that match the extensions list as set in

Tools | General Settings. By default, these are limited to: php, phtml,

inc, php3, php4 and php5.

To add a folder to a project:

1. In the Guard Explorer, open the right-click menu and select Add

Folder.

The folder browser will open.

2. Select the folder to add, and click OK.

The new folder will be added into the project and will be visible in the Guard

Explorer.

To add selected files to a project

1. In the Guard Explorer, open the right-click menu and select Add

Files. The file browser will open.

2. Select the file to add, and click OK. (For multiple files use CTRL

while selecting the files.)

The new files will be added into the project and will be visible in the Guard

Explorer.

30

Zend Guard

To remove files or folders from a project:

1. Select a file or folder in the Guard Explorer..

2. Open the right-click menu and select Remove from project. The

selected file or folder will be removed from the project (For

multiple files use CTRL while selecting the files.)

The removed files and folder will be removed from the project and will no longer

be visible in the Guard Explorer or in the project's directory.

Note:
Some applications are compatible with both PHP 4 and PHP 5. Encode them using

the PHP version used on the server.

If you want to keep resources in the project directory but you don't want them to

be sent to the output location, use the "Ignore Resource" option.

To Ignore resources:

1. Select a file or folder in the Guard Explorer.

2. Open the right-click menu and select "Ignore resource".

3. The "ignored" indicator will appear on the resource.

The selected file or folder will be ignored (i.e. not encoded and not copied to the

output location).

If you want to have resources in the output location that were not encoded, use

the "Exclude Resource" option.

To Exclude resources:

1. Select a file or folder in the Guard Explorer.

2. Open the right-click menu and select "Exclude Resource".

3. The "excluded" indicator will appear on the resource.

The selected file or folder will be excluded (i.e. not encoded and copied to the

output location).

31

Zend Guard User Guide

Basic Tutorial
Once you have decided which PHP files need to be encoded and the Obfuscation

type you want to apply to the code. Create a Zend Guard project and configure

the project's settings according to the following questions:

 Is the code intended for mass deployment?

 How important is the code (i.e. is it expensive intellectual property)?

If both the answers are "yes", it is better to use all Obfuscation types to secure

more code elements.

Encode Only

To encode without obfuscation, do not select any Obfuscation options.

List all code entities that will not be encoded in the Exclude List.

Note:
Encoded files which have obfuscated local variables only are compatible with

Zend Optimizer version 2.6 and above.

Encoded files which have obfuscated variables and also have obfuscated

functions, classes and/or PHP Internal symbols require the latest version of

Zend Optimizer (PHP4 Optimizer 3.0 and above; PHP5 Optimizer 3.3 and above).

The Zend Optimizer is available free of charge, from:

http://www.zend.com/downloads.

Scan Feature

The Scan feature (on the Exclude Tab) scans the code in order to locate entities

that should be added to the Exclude list. Among other things, it identifies strings

and functions with the same name. You can discard any suggestions. However,

the following situations require adding entities to the Exclude list manually.

Situations Requiring Adding Code Entities to the Exclude List

Testing/Debugging

Process

Entities that prevent the application from working

properly, (after obfuscation).

These entities will generate "Function not defined",

"Method not defined" and "Class not defined"

message types and will list the code file name and

specific line. This can be useful for tracking problems

as the obfuscated name may be meaningless. Having

32

Zend Guard

the file name and line in code helps identify which

function/class/method has been called.

Functions located

during debugging

Functions located during the debugging/testing

Function not

defined

Functions that generated "Function not defined" and

"Class not defined" message types that appeared

only after obfuscation.

Concatenating

Strings into

Function Names

The only instance the Suggest function cannot

identify is when Concatenating Strings into Function

Names. This includes instances where the code calls

an indirect function name and not the function's real

name. This occurs when the real function names are

not identified in the code as functions, but rather as

strings. The Suggest feature searches only for

functions in the code.

Indirect Functions User functions that are used indirectly or are called

from un-obfuscated script.

Indirect function

calls

This occurs when referencing function calls through a

variable holding the function name.

Functions defined

in un-obfuscated

code

This includes functions that cannot be automatically

identified through the setup process. These include

indirect functions and concatenated functions.

Note:
Errors that occur in the code before obfuscating indicate a problem in the actual

code.

Exclude List

The Exclude List contains all entities will not be obfuscated. Use the Scan feature

to recommend functions to be added to the Exclude list.

The Scan feature automatically identifies most functions that should not be

obfuscated. Run the Scan feature to locate functions that should not be

obfuscated.

33

Zend Guard User Guide

Secure the Project

Once all the settings have been configured the project can be encoded.

To Encode a Project

1. Make sure all the Project settings are configured to your
requirements.

2. In the main toolbar click (Project | Encode).

-Or-

In the Overview Tab click the "Encode Project" link.

The secured files will be placed in the Output Location defined in the Overview

Tab.

34

Zend Guard

Preferences
The preferences menu is a container for setting and viewing Zend Guard project

settings.

The preferences is accessed from the edit menu by clicking Edit |Preferences.

Note:

Preferences can also be configured for specific files/folders belonging to a project.

See "Overriding Project Preferences".

The preferences menu contains configuration options divided into the following

categories:

 Editors - Defines the XML editor's behavior when switching between

elements. The options determine what to do with changes made to XML

file content.

 Encoding and Obfuscation - set default preferences for guarding project

content.

Remove: PHPDoc Blocks and Line Numbers. Obfuscate: Variables,

Functions, Classes and PHP Internal Entities.

 Header Information - append code and information to the beginning of

each encoded file. This allows you to insert meta information (e.g.,

copyright, version, etc.) into your encoded application. It also allows you

to customize the message that is displayed if the Zend Optimizer is not

installed. See the "Header Information Tab" for complete information.

 License Keys - Use this to generate new License Keys and to detach old

licenses. Also, see Creating a License and License Files.

 Source Options - Define file and version specific handling options (see

table below for a description of each option).

 Zend IDE - Use this to set the path to Zend IDE. When enabled, you can

open PHP files from Zend Guard and edit them in your Zend IDE.

Preferences are applied to all projects unless specified and changes to the

preferences are applied to new projects (Existing Projects are not affected by

changes done in the general preferences menu).

35

Zend Guard User Guide

Source Options

Source Option Description

PHP Version PHP 4 or PHP 5.

Short Tag

Support

Enable recognition of short PHP tags. Recognizes <? as a

valid PHP start tag. When this option is not selected, Zend

Guard will not encode short tags; they will be treated as

regular HTML.

ASP Tag Support

Enable recognition of ASP tags. Recognizes <% as a valid

PHP start tag. When not selected, code within ASP tags is

treated as regular HTML.

Resolve

Symlinks

Resolves Symbolic Links before encoding (not applicable in

Windows).

A symbolic link (often shortened to symlink and also

known as a soft link) consists of a special type of file that

serves as a reference to another file or directory. Unix-like

operating systems in particular often feature symbolic

links.

Files to Encode Lists the file extensions for Guard to encode (extensions

not listed will not be encoded).

File extensions that are not listed here and in "Patterns to

Ignore" will be sent as-is to the output folder.

Patterns to

Ignore

Files matching these patterns will not be encoded when

encoding a directory, nor will they be copied as-is to the

target directory. By default, the list contains the CVS

directory and cvsignore files (includes Wildcards '*').

Non-PHP CODE Encoding sends output of the PHP encoded files to the target

directory by default. However, some files will not be encoded (e.g., images that

need to be copied to the output directories). non-PHP project files will be sent as-

is to the output directory automatically if they are not included in the list of

Patterns to ignore.

36

Zend Guard

Overriding Project Preferences
This procedure describes how to override the default preferences that are set in:

Edit | Preferences.

Override preferences is only done to existing projects.

The override feature is used when configurations different than the ones defined

in the Project should be applied to a resource (file or folder). One of the benefits

of this option is when a certain pattern is selected that includes a file name. For

example; if you choose to exclude the pattern test*.php and you have a file

called contest.php the file will also be excluded. Applying the override option to a

selected file will remove the association with the exclude settings.

Preferences can be changed per folder or single file. This option is useful for cases

where a certain file or folder contains different characteristics such as situations

when an entire project consists of PHP5 code and only one folder contains code

written in PHP4.

To Override Project Preferences

1. Open the Project in the Guard Explorer

2. Click on a File or Folder

A blank Overview Tab will be displayed with a single option:

"Override Project Configuration".

3. Click this option.

Configuration Options will be enabled.

4. Set the configuration options for the selected file or folder

5. To save the changes, go to the main toolbar and click Save.

Repeat this process for each file and folder that required unique settings

(different than the default Project preferences).

37

Zend Guard User Guide

Configuring the Integration with Zend IDE
The following procedure describes how to configure the integration with Zend

IDE. The integration enables users to extend Zend Guard with the rich editing

features included in the Zend IDE. This provides users with a seamless workflow

for fixing and modifying code through Zend Guard. This enables you to open files

and fix errors in Zend IDE, seamlessly.

Before configuring the integration make sure you have both Zend Guard and

Zend IDE installed on the same machine. It is also useful to already know the

location of the Zend IDE's installation directory before setting-up the integration.

Settings have to be configured in both applications in order to successfully start

the integration between Zend IDE and Zend Guard.

To configure the Zend IDE settings:

1. Make sure the Zend Guard is installed on the same machine.

2. In Zend IDE go to: Tools | Preferences and select the Desktop

tab.

3. Go to the Desktop tab's General Settings section and enter the

path directing to the Zend Guard program file in the Zend Guard

Path field.

To configure the Zend Guard settings:

1. Make sure that Studio is installed on the same machine.

2. Go to: Edit | Preferences | Zend IDE.

3. Enter the path to Zend IDE and click Apply/OK.

Once the configuration has been completed, a new option will be added to the

right-click menu in the Guard Explorer called "Open with Zend IDE". Clicking this

option will automatically open the file for editing in the Zend IDE.

38

Zend Guard

Importing an Existing Project
This procedure describes how to import a project that was made with Zend Guard

version 4 and earlier. Using this procedure will ensure seamless import of your

existing project settings and configurations to the Zend Guard Eclipse based

environment.

Only use this procedure if you have upgraded Zend Guard from a previous

version.

To Import an existing project:

1. Go to the Management view. Right click and select Import

-or- In the Guard Explorer right-click and select Import.

The Import dialog will open.

Import Project

2. Select Zend Guard Project and click Next. Use the Browser to

locate an existing project or to locate an Eclipse project from the

file system.

39

Zend Guard User Guide

 Project Contents (Imported)

3. Browse to find the project to be imported and click Next.

4. Click File | Save or click the Save icon and the project will be

saved.

The imported project will now be ready for use.

40

Zend Guard

Path Variable Preferences
Path Variables enable to map locations on your machine in order to easily handle

content located in different directories under the same project. This option is only

enabled (active) when the topmost node is selected in the Guard Explorer.

A path variable is a name that is mapped to a specific location on the machine.

By using a path variable, you can share projects containing linked resources with

team members without requiring the same directory structure as on your file

system.

Include path variables can also be added to a project's include path.

The Path Variables menu is accessed from Project | Path Variables.

Figure 11 - Path Variables Menu

The Path Variables menu allows users to add edit and remove path variables.

41

Zend Guard User Guide

Editing Path Variables
This procedure describes how to Use Path Variables in a Project Context

To enable the Path Variables menu make sure the topmost node is selected in the

Guard Explorer.

To do add a new Path Variable

1. Go to Project | Path Variables

2. Click Add.

A new dialog called "Enter New Variable will be displayed.

3. Enter the Variable Name - Select a name that will be meaningful to

the Projects context.

Note: variable names should not include empty spaces and

slashes, use underscores or uppercase characters to separate

between names.

4. Use the Browse button to locate the folder.

5. Click OK to save and close the variable.

A new variable will be added to the list of the project's available variables.

Once the variable has been added the new content can be added to the Project.

To add new content to the project:

1. Go to the Guard Explorer and select the Project folder (the

topmost node in the tree).

2. Right Click on the project folder to open a menu.

3. Select Add File or Folder (depending on the content that you want

to add).

The "Open File/Folder" Dialog is displayed.

4. Select the option "Specify path using variables, like $(var)".

5. Select the variable from the list and click OK to save and close.

The new File/Folder will be added to the Guard Explorer

42

Zend Guard

Project Variables can also be edited and removed from the project settings.

Editing and removing is only enabled after a Project Variable has been added to

the project.

To Edit/Remove Path Variables from a Project:

1. Select the topmost node in the Guard Explorer.

2. Go to Project | Path Variables.

3. Select a variable form the list and Click Edit to open the Edit dialog

and modify the variables name -or- remove to delete the variable

from the project.

After clicking OK the changes will be immediately applied to the Guard Explorer.

Note:

Changing a Variable name to a name that does not exist will remove the

file/folder from the Guard Explorer, renaming the file back to the correct name

will restore the file/folder to the explorer.

Also, removing a variable from the variables list will also delete the content from

the project.

43

Zend Guard User Guide

Tabs

The tabs section is the main area for viewing and configuring advanced settings

for projects files and folders.

Note:

If the options in the tabs are disabled the selected project and its included files

and folders will inherit the default preferences. To override these preferences see

"Overriding Project Preferences".

Tabs are used to define and configure the following:

 Overview - a general overview of your Zend Guard projects and access to

most other available functionality.

 Security - License and Security configuration options including encoding

and obfuscation.

 Exclude - lists entities that should not be obfuscated.

 Header - to append code and information to the beginning of each

encoded file.

 XML - displays the entire XML configuration file for editing.

44

Zend Guard

Overview Tab
The Overview tab provides a general overview of your Zend Guard projects and

access to most other available functionality.

This tab is divided into two sections as follows:

 General Options - General configuration Settings

 Source Options - PHP code global and local settings

General Options

Zend Guard's Overview tab sets the application's general configuration and

default project settings

The encoding settings determine the type of encoding to apply to your code and

offer other security and obfuscation options to further enhance the safety

precautions used to protect your code.

Option Description

Product

Name

Set the name for the Product.

Product

Version

Set the Product version.

Output

Location

The folder in which the encoded files will be placed.

Zend

Optimizer

Compatibility

PHP 4 project files that have been encoded or whose local

variables (only) are obfuscated are compatible with Zend

Optimizer 2.6.

PHP 5 project files that have been encoded or obfuscated more

strongly, require Zend Optimizer 3.3 (or greater) in order to

run.

In general, Zend Optimizer 3.3 requires PHP 4.3 and higher.

Code

Optimization

Optimization enables faster execution and reduces the CPU

load for the server. Some scripts may not support optimization

(generally, scripts that interface with COM or Java objects). If

you experience problems with the encoded scripts, try reducing

the optimization level.

None - Disables code optimization.

Minimal - Use if application does not perform correctly.

Full - Recommended optimization level. Optimized files run

faster and are more difficult to attack.

45

Zend Guard User Guide

Error

Handling

Ignore Errors - Encoding will not be terminated when errors

occur in the PHP code.

Exit on Error - Encoding will stop and display the errors in the

Zend Guard's messages area.

Note:

When integrated with Zend IDE, users can investigate errors

with Zend IDE directly from the messages area. To do so, click

on a message.

Verbosity

Level

The options are:

Verbose - Provides detailed information.

Silent - Lists Errors only

Links Click the linked option to open the corresponding Guard dialog:

 Encode Project - a shortcut to start encoding the project.

 Add Source - Opens a dialog for adding additional source

filed to the project.

 Export Parameters File - Opens a dialog for generating

an XML file containing the project's encoding

configurations for "Encoding External code using the XML

File".

 Configure Security Settings - Jump to the Security tab.

 Configure Obfuscation Exclude List - Jump to the Exclude

tab.

 Configure PHP Encoded File Headers - jump to the

Header Information tab.

 View these settings in XML Format - Jumps to the XML

Editor to display the settings in XML format.

46

Zend Guard

Source Options

Set the following Global and Local Options.

Option Description

Use Global Source

Options

Check this to use the Global options. When this is not

checked, the settings will apply only to the specific files

or folders selected by the management tab.

PHP Version Set to encode either PHP 4 code or PHP 5 code.

Short Tag Support Enable recognition of short PHP tags. Recognizes <? as a

valid PHP start tag. When this option is not selected,

Zend Guard will not encode short tags; they will be

treated as regular HTML.

ASP Tag Support Enable recognition of ASP tags. Recognizes <% as a

valid PHP start tag. When not selected, code within ASP

tags is treated as regular HTML.

Resolve Symlinks Resolves Symbolic Links before encoding (not applicable

in Windows).

A symbolic link (often shortened to symlink and also

known as a soft link) consists of a special type of file that

serves as a reference to another file or directory. Unix-

like operating systems in particular often feature

symbolic links.

Files to Encode Lists the file extensions for Guard to encode (extensions

not listed will not be encoded). File extensions that are

not listed here and in "Patterns to Ignore" will be sent

as-is to the output folder.

Patterns to Ignore Files matching these patterns will not be encoded when

encoding a directory, nor will they be copied as-is to the

target directory. By default, the list contains the CVS

directory and cvsignore files.

47

Zend Guard User Guide

Security Tab
This tab contains License and Security configuration options.

 Licenses - Licenses allow you to control the use of your encoded files as

well as preventing piracy, unauthorized or invalid use. The Zend Licensing

options enable you to configure License options, Restrictions and to

create License files.

 Encoding and obfuscation - Encoding converts PHP files into encoded

binary files. Obfuscation converts user generated names (of variables,

functions, classes, etc.) into machine generated names that contain no

application context. The Encoding and Obfuscation Tab is used to manage

encoding and obfuscation options and configurations for the entire Zend

Guard project. Individual options can be applied to all Guard files or to

individual files, as required.

Note:
Once the files have been encoded they are no longer editable. Any attempt to

modify the files once encoded will result in rendering the files unusable. This

provides an additional security layer for protecting intellectual property.

Name Description

Licenses

Work Only

with

Encoded

Files

Creates encoded files that work only in conjunction with other

encoded files created by the same version of Zend Guard.

Enables you to encode your files so that they will work only with

encoded files containing your signature and makes it more

difficult for users to reverse-engineer your code using PHP's code

introspection functions, and include().

This feature prevents users from attaching their own encoded file

or using PHP's introspection functions to reveal information about

the structure of the file

If not selected the above protections are not enabled.

48

Zend Guard

Name Description

Licensing Enables you to encode files to work only with the License files.

Disabled: Disables licensing support altogether.

Enable License Support: A valid license is required for the

encoded files to load properly. The license itself is generated by

clicking the link: "Generate Product License File" located on

the Zend Guard's Security tab (or by clicking File | New |

Product License). The license requirement is automatically

enforced at all times.

License Key

Generated - Works with a license key generated by Zend Guard.

External - Works with a Zend Guard generated license key

saved in an External File.

Expiration Determines expiration behavior for the encoded files. Can be

used to limit a file's life span (e.g., sample version that will

expire on selected date).

This feature is not related to the License Manager and

should not be confused with the expiration date of

licenses.

Encoded code will never expire: Disables the expiration date

for encoded files.

Encoded code will expire on: Sets the expiration date for

encoded files. The encoded files will expire on the expiration date

and be made unusable. Use this option to create for time-limited

software, beta versions or releases that will expire on a specific

date. This can encourage your customers to upgrade.

Encoded code will expire after: Sets the number of

years/months/days that the encoded file will work (starting from

date the application was first used).

Note:
To create evaluation software (Beta versions) that expires after a

designated period of use, use the Expiration options.

49

Zend Guard User Guide

Encoding and Obfuscation Methods

Remove:

 PHP DocBlocs - Removes PHP DocBlock sections while encoding.

 Line Numbers - Removes line numbering while encoding. Removing the

line numbers when an error appears means that there will not be a line

number to identify the location of the code that generated the error. This

is an additional security precaution against reverse engineering.

Obfuscate:

Encoding is automatic. It converts PHP files into encoded binary files but does not

obfuscate code.

 Variables - Scrambles the context by encrypting user generated variables.

 Functions - Scrambles the context by encrypting user generated function

names.

 Classes - Scrambles the context by encrypting user generated class

names.

 Apply selections to PHP built-in symbols -Scrambles the context by

encrypting PHP internal symbols.

50

Zend Guard

Exclude Tab
This list is a placeholder for entities that should not be obfuscated. In general

these are user functions, class names, and class methods that are used indirectly

or need to be called from an un-obfuscated script.

Entities can be added to the exclude list manually (click the New button) and by

using the Scan option.

The main reason for adding entities to the exclude list is to facilitate the

debugging, QA process. Some entities can cause code to fail if they are

obfuscated. To prevent this from occurring in the final product version always test

your code after obfuscating. Any entities that cannot be obfuscated should be

added to the Exclude List.

This procedure describes how to use the Exclude List to define which code entities

should not be obfuscated.

The Exclude List includes the following options:

 Scan Code

 Add Entities to the List

 Import and export List contents

 Remove contents from the List

To read more about what to exclude go to "Excluding Functions".

Note:
Errors that occur in the code before obfuscating indicate a problem in the code.

Scanning Code

The Scan feature scans the code in order to locate entities that should be added

to the Exclude list. It identifies strings and functions with the same name. You

can discard any suggestions.

To Automatically Scan Code

1. Click the Scan link. The code will be scanned and the suggestions
displayed in a suggestions list.

2. Check the suggestions to be used, the others will be discarded
automatically.

After the suggestions have been applied and code has been obfuscated, the code

should be tested normally.

51

Zend Guard User Guide

Adding Entities Manually

You can add entities to the Exclude List manually. Listed entities will not be

obfuscated. In general, if an entity causes an error during testing add it to the

exclude list to determine if the obfuscation caused the error.

Always Exclude

 Indirect function calls. These occur when referencing function

calls through a variable holding the function name.

 Functions Defined in Un-obfuscated Code

• Functions that cannot be automatically identified through the setup

process. These include indirect and concatenated functions.

• Functions located during the debugging/testing stage of the application.

• Functions that generated "Function not defined" and "Class not defined"

message types that only appeared after obfuscating the code.

To manually add entities:

1. In the Exclude List Tab, click New.
The Add Excluded Entities dialog will be displayed.

2. Enter the name of the entity, the wild card (*) can be used only
at the end of strings when adding names manually to the exclude
list (correct use: " test* "; incorrect use: " *test"). Click OK to
save and close.
The entity will be added to the Exclude List.

3. -Optional- In the Exclude list's Reason column, Click to begin
writing and describe why the entity was added to the Exclude List.

Once added to the list and as long as the check-box next to the name is full, the

Entity will not be obfuscated.

Note:

Use the override feature when a certain pattern is selected that includes a file

name. For example; if you choose to exclude the pattern test*.php and you have

a file called contest.php the file will also be excluded. Applying the override option

to a selected file will remove the association with the exclude settings.

52

Zend Guard

Importing and Exporting Exclude Lists

This procedure describes how to import and export Exclude List settings. These

options enable you to share your selection with other Zend Guard users.

Importing an Exclude List is based on the assumption that you already have an

Exclude List file generated from Zend Guard.

To import an Exclude List:

1. In the Exclude List tab, click Import.
A browse dialog will be displayed.

2. Browse to locate the file and click Open.

Once added to the list and as long as the check-box next to the name is full, the

Entity will not be obfuscated.

Exporting an Exclude List is the process of generating an external file containing

all the entities and their descriptions (reasons) to an external file that can be

reused with other projects and Zend Guard applications.

To export an Exclude List:

1. In the Exclude List tab, click Export.
A browse dialog will be displayed.

2. Browse to locate the place to save the file, name the file and click
Save.
A new file containing the contents of the Exclude List and its
details will be created in the specified location.

Once exported the file can be reused in other projects and Zend Guard

applications to automatically populate an Exclude list.

Note:
The "Load from file" option does not validate the contents of the file; Zend Guard

assumes that each line is a separate function. Zend Guard does not verify that

the entities listed in the file are proper functions, etc.

53

Zend Guard User Guide

Removing Content from the Exclude List

The procedure describes the different options for removing content from the

Exclude List.

 Remove - will remove a selected entity from the Exclude List

 Remove Suggested - will remove all the entities that were added to the list

as a result of the Scam process

 Remove all - will empty the list of all its contents.

54

Zend Guard

Excluding PHP Entities
When using the Exclude List (in the Project Areas Exclude List Tab) there are

several code related issues that should be considered.

The following describes the instances where it is recommended to add different

entities to the Exclude List and how to optimize your selections.

Contents:

Functions Referenced via a Variable

Functions Passed via Arguments

Functions Implementing External Interfaces

Functions Used as Object Callbacks

Classes

Autoloading Classes

Exclude Application APIs

Functions Referenced via a Variable

Functions that are referenced by a variable that holds their name, should be

added to the Exclude List.

function do_mysql_query($query) { ... }

function do_sqlite_query($query) { ... }

if($db == "mysql")

{

$query_function = "do_mysql_query"

}

else

{

$query_function = "do_sqlite_squery";

}

$result = $query_function ("SELECT * FROM TABLE");

The functions do_mysql_query and do_sqlite_query should be added to the

exclude list so their names will stay intact.

Functions Passed via Arguments

Functions that their name is passed to other functions through arguments

(callbacks), should be added to the Exclude List. In the code example below, the

functions myerror and myfunc are callback functions and should be added to the

Exclude List.

55

Zend Guard User Guide

function myerror() { ... }

set_error_handler('myerror');

- or -

function myfunc($data) { ... }

array_walk($array, 'myfunc');

Functions Implementing External Interfaces

Functions that implement an external interface (in this example: rewind, valid,

current, next and key) should be added to the Exclude List otherwise the c_iter

will no longer implement the iterator interface.

class c_iter implements Iterator {

function rewind() { ... }

function valid() { ... }

function current() { ... }

function next() { ... }

function key() { ... }

}

Functions Used as Object Callbacks

Functions and classes that are related to object callbacks should be added to the

Exclude List.

class VariableStream {

 function stream_open(...) {}

 function stream_read($count) {}

 ...

}

stream_wrapper_register("var", "VariableStream");

In this example, the class name VariableStream and its methods (i.e.

stream_open, stream_read) must be added to the Exclude List. (See

http://www.php.net/manual/en/function.stream-wrapper-register.php for a

complete list of callback names, classes and other such functions).

Classes

When the code refers to class names (or methods) through strings, the class

name (or method name) must stay the same. Therefore the class name must be

added to the exclude list (to avoid obfuscation).

Example:

<?php

56

Zend Guard

 class MyClass

 {

 public function printName()

 {

 echo "John";

 }

 public function printLastName()

 {

 echo "Doe";

 }

 }

 $className = "MyClass";

 // runtime error: after obfuscation MyClass is no longer the

class name

 $obj = new $className();

 $obj->printName();

 // runtime error: after obfuscation MyClass is no longer the

class name

 $clazz = new ReflectionClass("MyClass");

 $obj2 = $clazz->newInstance();

 // runtime error: after obfuscation printLastName is no longer

the method name

 $method = $clazz->getMethod("printLastName");

 $method->invoke($obj2);

?>

Autoloading Classes

Autoloading classes will not work since the filename on the disk would not

match the obfuscated class name. The classes that are loaded through

autoloading must be added to the Exclude List.

Exclude Application APIs

Classes, methods and functions that are part of an application API and typically

called by a 3rd party cannot be obfuscated (as the obfuscated name cannot be

predicted) and must be added to the Exclude list.

57

Zend Guard User Guide

Header Tab
This tab is used to append code and information to the beginning of each

encoded file. This allows you to insert meta information (e.g., copyright, version,

etc.) into your encoded application. It also allows you to customize the message

that is displayed if the Zend Optimizer is not installed.

The Header tab contains the following options:

Name Description

Do Not Append

Header

Information

No Header information will be appended.

Append Default

Zend Header

Information

Appends the default Zend Guard Header information.

Generate Custom

Header

Append custom code and/or information to the header of

each encoded file. The information (e.g., display

copyright and version information) is embedded in the

form of PHP comments and is viewable by the end-user.

It also enables you to customize the message.

The options are:

 Generate Custom Header - This will include a

customized header and override the default Zend

Guard Header.

 Append Custom Header to Default Guard Header -

This will include the custom and default headers.

 Text Header (select only one of these options):

• Path - the location of a file containing a message

or image to be displayed.

• Text - write a header message.

 PHP Header (select only one of these options):

• Path - the location of a file containing the code to

be run.

• Text - write code directly into the text box.

Adding PHP code can be useful when displaying custom error

messages when the Zend Optimizer is not properly installed. For

58

Zend Guard

example, to tell users to reinstall the product if Zend Optimizer is

not properly installed, you can use code similar to the following:

print "ExampleApp is not properly installed. Please

consult the User Manual, and reinstall it.";

Note:

The combined size of the comments and PHP code blocks is

limited to approximately 62KB.

59

Zend Guard User Guide

XML Editing Tab
This tab opens and displays the entire XML configuration file in editable format.

All options can be viewed and edited manually, if required.

Note:

Please take human error into consideration when editing the XML file and check

that there are no mistakes that could cause encoding to fail.

To generate an XML file:

1. In the General Tab click the Link "Export Parameters File"
the "Parameters File" dialog will open.

2. Select a project from the list.

3. In the "Select the export destination" section name the file
(without an extension correct: parameters incorrect
parameters.xml) and click browse to specify the location for
storing the file.

4. Click Finish to start generating the file.

5. Check the suggestions to be used, the others will be discarded
automatically.**

Once the file has been created it can be run with the command line to secure PHP

code. This can be done on the local machine or on another machine, see below

for more information on how to encode PHP files with the XML file.

The XML editing option allows in one simple step, to encode projects that contain

several encoding options. This includes different PHP versions and different levels

of encoding. The XML is in essence a single file that contains different settings to

be applied to different files and folders in the project.

When choosing the Option "Override Project Information" (located in the General

Tab) the information collected in the "General Tab" is exported to an xml file. This

file can then be used to encode code located on a different machine. The XML

Editor included in the Zend Guard provides editing options to modify the XML file

if necessary.

60

Zend Guard

Encoding External code using the XML File

As we mentioned earlier, the XML output generated by the Zend Guard, can be

used to encode files wilt the command line on this or on another machine.

To Encode using the command line (and the XML File):

1. Create the XML file.

2. If you are using a remote machine transfer the XML file and your
exclude list file to the machine.

3. Move the XML file and the Encoder files located in the Zend
Guard"s installation directory (Zend\ZendGuard-<Your Product
Verson>\plugins\com.zend.guard.core.resources.<Your
OS>\resources.

4. After arranging all the files activate the Encoder from the

command line with the following command:

GuardEngine -- XML-FILE <Path to XML File>.

The settings defined in the file will be applied to the PHP code, including input and

output directory locations. Therefore, you may want to manually edit the file if it

is on a different machine to define the different file locations.

61

Zend Guard User Guide

Encoding

Encoding with the Zend Guard allows developers to encode their PHP script at any

time during the development process. More importantly, this enables code to be

encoded prior to distribution or publishing.

Find out how to:

 Use Encoding Features

 Encode projects - encode files and expected outcomes.

 Distribute Encoded Files - transferring encoded files

 Manually Encode - encoding files without the user interface.

Encoding
Encoding with the Zend Guard allows developers to encode their PHP script at any

time during the development process. More importantly, this enables code to be

encoded prior to distribution or publishing.

Zend Guard optimizes secures and licenses PHP code to:

• Expedite at Run-time

Eliminates compilation and optimization at run-time.

• Create Unreadable Source Code

Files are encoded in an unreadable (to people) format.

• Require Valid License (User Configurable)

Files can be encoded to support or require licensing (License file

restriction).

• Create Expiration Date/Time (User Configurable)

Files can be encoded to expire at a set date.

• Create Encoded-Only Mode (User Configurable)

Files can be set to cooperate with only associated encoded files that bear

the same encoded signature.

Expedited at Run-time

Zend Guard optimizes PHP code, this results in faster execution and reduces the

server's CPU load. The files are encoded and optimized, eliminating run-time

compiling and reducing the number of run-time processing steps.

Secure

Zend Guard saves code in a closed Zend Intermediate Code format. This is a

platform-independent binary code. It provides protection against tampering with

the original source file, reverse engineering and copyright infringement. This is

62

Zend Guard

the key to creating exclusive software solutions and protected commercial PHP

applications.

License Requirements

These enable you to specify the license level which is then encoded into the file

itself. There are three encoding options:

 No Enforcement

There is no interaction with a license file; no license is required in order to

use the encoded file.

 File Enforcement

The file will not work unless a valid license file is available. The Licenser

will generate the license.

 License API Enforcement

Uses the zend_loader_file_licensed() API function to verify valid

license at specified points.

 Product Name

The product name, as referred to in the license files. When issuing a

license for this application, you must use the same name.

Encoding determines the license level. Specific licensing details, such as the

scope of a license, are determined during license generation.

No Obfuscation

Encoding is done by default even if there is no obfuscation method selected.

The option: "Work only with Encoded Files" requires that files be called only

by other encoded files. This option offers additional protection from hacking and

reverse-engineering.

The files are in a platform-independent format that can be deployed on all

supported platforms with Zend Optimizer installed on their server. For details on

supported platforms, see Zend's online system requirements at:

http://www.zend.com/store/products/zend-guard-sysreq.php.

Note:

Encoded files which have obfuscated local variables only are compatible with

Zend Optimizer version 2.6 and above.

Encoded files which have obfuscated variables and also have obfuscated

functions, classes and/or PHP Internal symbols require the latest version of Zend

Optimizer (PHP4 Optimizer 3.0 and above; PHP5 Optimizer 3.3 and above).

The Zend Optimizer is available free of charge, from:

http://www.zend.com/downloads.

63

Zend Guard User Guide

How to Encode
Once you have defined the Encoding Settings, you can encode and obfuscate

files.

To Encode and Obfuscate files:

1. Click the Encode icon (), or

2. Right click the project in the Explorer and select Encode Project.

Results, warnings, and messages are reported in the Encoding Messages area

during encoding. A brief explanation is included with each encoding error.

The Issuing Command message is a notification that a file was successfully

encoded. The message includes the file name and the project settings details.

Note:

If you are using a beta version or an unregistered product, file will be encoded for

14 days only. In order to encode files for more than 14 days, the product must

be registered.

Messages Area

If an error is found in the PHP during encoding, encoding execution will be

terminated or ignored, as specified. A prompt to either correct the error or

remove the file containing the error from the project will appear. Only projects

containing error-free PHP files can be encoded.

If you have Zend IDE Client installed, double-click on the error message. The file

that caused the message will open in the Zend IDE Client to the line of the script

that caused the error. (For information on Zend IDE Client, refer to the Zend

Website: http://www.zend.com/products.php.)

Stop encoding by clicking the Cancel button in the Encoding dialog.

Output

Output includes the encoded files, any sub folders containing files; and copies all

the files located in the project folders.

It is important to consider the output of the path structures, such as sub-folders,

when defining a Project. Individual files added to the project will be added to the

target folder.

When a project contains multiple (sub)directories output will contain only unique

directory structures. Directory structures common to all project directories will

not be included with the output.

64

Zend Guard

Example:

The directory FinalRelease was the only directory added to a project.

The following are the full path of the files below the FinalRelease directory:

1. C:\FinalRelease\Module1\Dialogs\NameSelector.php

2. C:\FinalRelease\Module1\Screens\Welcome.inc

For target path = C:\Products\ABCSoftware, the resulting output would be:

1. C:\Products\ABCSoftware\FinalRelease\Dialogs\Screens\NameSelector.php

2. C:\Products\ABCSoftware\FinalRelease\Module1\Screens\Welcome.inc

Distributing Encoded Files
Once all the files have been encoded, an organization can deploy the files in any

way they choose (zip, tar and installer). As long as the encoder is installed on the

same machine the product will work.

License restrictions, when applied will determine the period of time the

application will be licensed for use.

The license files Zend Guard generates can be distributed separately.

Editing Encoded Files

Once the files have been encoded they are no longer editable. Any attempt to

modify the files once encoded will result in rendering the files unusable. This

provides an additional security layer for protecting intellectual property.

Note:
Files encoded by the Zend Guard are actually binary files. The proper protocol for

transferring files between computers is as binary files.

All other transfer methods will corrupt the files and generate an error message.

Manual Encoding
If you prefer to configure and encode projects manually, without using the Zend

Guard User Interface, use the file: GuardEngine.exe

Usage

You must prepare an XML file as the input parameter to the GuardEngine. This

file must contain all required input information in order to properly encode and

obfuscate your project.

Usage is as follows:

GuardEngine --xml-file <xml-file-path> [--export-candidates <target-

file> <path1> [path2] ...]

65

Zend Guard User Guide

Schema

The entire schema containing all parameters and format is included in the file:

Guard.xsd. This file is located in the Zend Guard installation folder.

Obfuscation

Source Code contains various tags and names defined by the programmer. These

names are typically made meaningful to make the code easy to understand and

maintain, by developers.

Obfuscation converts these tags and names into cryptic names, in order to

make the code difficult to understand by others, without affecting code execution.
 Example:

Original Code:

<?php

function getName()

{

 echo "John Doe";

}

getName();

?>

After Obfuscation:

<?php

function a1234cd()

{

 echo "John Doe";

}

a1234cd();

?>

 The function getName, when obfuscated, will be changed to something

that does not have a meaning, such as a1234cd creating the following

code:

As you can see from the example, the execution logic of the code is maintained,

but the code has become difficult to understand.

Several options have been provided to suit various code protection levels. The

Zend Guard obfuscation options support various PHP versions (including PHP 4

and PHP 5).

The following encoding and obfuscation options are provided through the

Security tab:

 Encoding (no obfuscation)

 Variables - Converts user generated Variable names into machine-

generated, cryptic Variable names. This completely scrambles the original

context of the original, user generated Variable names.

66

Zend Guard

 Functions - Converts user generated Function names into machine-

generated, cryptic Function names. This completely scrambles the original

context of the original, user generated Function names.

 Classes - Converts user generated Class names and methods into

machine-generated, cryptic Class names. This completely scrambles the

context of the original, user generated Class names and methods.

 PHP Built in symbols - Converts PHP language pre-defined names into

machine-generated, cryptic names. For example acos(), count_chars(),

Exception, StdClass and echo will be completely scrambled.

Important Note:

Obfuscation may change your original code to the extent that it may not execute

properly.

Use the Exclude List to resolve such problems.

For example, code that calls functions referenced by string may not run after

obfuscation:

<?php

function do_mysql_query($query) { ... }

function do_sqlite_query($query) { ... }

function executeQuery($dbname)

{

$query_function = "do_" . $dbname . "_query";

$result = $query_function("SELECT * FROM TABLE");

}

?>

After obfuscation the functions do_mysql_query, do_sqlite_query and

executeQuery will be obfuscated and the value of $query_function will no longer

match any of the function names and a runtime error will occur (i.e. function not

found error).

Therefore use the Exclude List to exclude the function names do_mysql_query

and do_sqlite_query from being obfuscated.

Additional examples of functions, class names, methods and variables that should

not be obfuscated can be found in "Excluding PHP Entities".

67

Zend Guard User Guide

There is a direct correlation between the number of files obfuscated and the

difficulty understanding and reverse engineering code. Therefore, complete

project obfuscation will best protect your application.

Find out more about Obfuscation:

 Encoding Only

 Variable Obfuscation

 Function Obfuscation

 Testing and Debugging

Encoding Only
When no obfuscation options are selected, Zend Guard only converts PHP files

into encoded binary files (Encoding) and does not require any developer

involvement. Converting PHP files into encoded binary files makes PHP code

unreadable by other developers.

Use this option when relatively low protection for source code is required.

Variable Obfuscation
A variable obfuscation modifies only local variables in source code. This

provides improved security, is seamless to the developer and does not generate

additional overhead. In addition, all obfuscated files are also encoded

automatically.

Note:

The combination of Encoding, and obfuscating local variables, ensures that

even if a third party does manage to decode the encoded files, they are

prevented from exploiting the code.

Function Obfuscation
Function obfuscation, obfuscates more the application's function names and

calls, (excluding entities that have been added to the Exclude List).

All obfuscated files are also encoded automatically.

Function obfuscation along with Variable obfuscation provides the most efficient

security coverage for PHP code.

You can exclude specific entities from being obfuscated by means of the Exclude

List.

68

Zend Guard

Testing and Debugging Applications
Any code that has been changed or manipulated must be verified and checked to

determine that it still works. Code that has undergone Zend Guard

encoding/obfuscation is no exception.

No matter what type of encoding or obfuscation is applied to the code, it is

necessary to validate the code by running a complete QA (Quality Assurance)

cycle on the code. Code validation should be repeated after each time the code is

encoded or obfuscated.

Extra attention should be given when obfuscating many types of entities. Errors

found in the code indicate entities that should be included in the Exclude List.

Licenses

This section describes how to enforce license restrictions and create product

licenses.

Find out how to:

 Create a License

 Install a License

 Enforce a License

 Place a license

 Locate your Host ID

Creating a License
This procedure describes how to create a license for your code along with

descriptions of the different options and parameters available for a license.

Licenses are used in organizations in order to grant use of software to users who

have legally obtained a License. In addition to usage, licenses can hold additional

details pertaining to the number of users, license expiration and additional means

for enforcing usage to authorized users only.

To create a license

1. Click the New icon () in the Zend Guard Toolbar and select

Zend Guard License from the drop down menu. The Product

License dialog will open. This is where the license is

generated.(See License Parameters for descriptions of the

69

Zend Guard User Guide

different parameters

Figure 12 - Product License Dialog

2. Enter the relevant information click Next.

3. Use the following dialog to limit the allowed IP numbers, Zend Host

IDs and the number of concurrent users.

70

Zend Guard

3. In the Concurrent Users section, click Settings to configure the

number of Concurrent Users. Only after entering a value in the

"Concurrent Users" section will the Concurrent Users Settings

dialog be enabled. Click Next to continue

Note:

Concurrent user licenses will not work on PHP running in CGI mode.

71

Zend Guard User Guide

Figure 13 - Settings Dialog

4. Select and configure the following options, as required, then click

Next:

 Lease Timeout - The maximum amount of time that the

end-user can leave the application idle before the license

considers him/her to have ceased use of the application and

disconnects the user from the application.

 Cookie Support - Prevents Access when the browser does

not support cookies.

 Error Message - You can edit the Error Message sent to

users without cookie support.

 Limit Exceeded - The actions to take when the number of

users attempting to use the application exceeds the

maximum allowed number.

• Wait until a lease expires - Keeps the user in queue on a

first-come-first-serve basis until a lease becomes available.

• Error Message - You can create/edit a message to display

72

Zend Guard

when the limit is exceeded.

5. The Additional Information dialog will appear. It is used to store

additional information in the license file that can be used in

conjunction with the function: zend_loader_file_licensed() in order

to implement customized licensing rules. Information placed will be

signed. If this information is changed, the license becomes invalid.

Figure 14 - Additional Information/Attributes

6. Click Add to open the New Attribute dialog. Both the Attribute and

its value must be filed in. Enter the information and click OK to

return to the Additional Information dialog.

Repeat for each attribute.

73

Zend Guard User Guide

 New Attribute

7. Click Finish to create the license file.

A confirmation request will notify if the license generation

succeeded of failed.

The new license file will be generated to the location specified in the Target File

location (the first screen in the Create License Wizard). The license is now ready

to be installed

Cookie Support

When the Require Cookies option is NOT selected, any page can be loaded,

concurrently, once, from any number of browsers, even when the number of

concurrent users is limited (even to a single user).

This happens because, the first time that the page is accessed, no cookie is

present.

The second time that the page is accessed, a cookie *is* present (even though

not required). The server then limits access.

In addition, if the "Require Cookies" option is NOT selected, AND the browser is

set to not receive cookies, any page can be loaded, any number of times, from

any number of browsers.

This is because no cookie is present at any time. The server has no way to know

that the page has been accessed.

In order to effectively limit the number of concurrent users you must require

cookies.

74

Zend Guard

Limit Number of Concurrent Users

This creates a "floating license" that limits the number of users who can

concurrently use the application. When the number of users attempting to use the

application exceeds the maximum, you can create the Error Message that

"excess" user receives. You can also select the "Wait Until a Lease Expires"

option. This option keeps the user in the queue on a first-come-first-serve basis

until a lease becomes available.

Example: The developer sets the number of permitted concurrent users as 20.

As long as there are no more than 20 requests to use the application, access to

the application is granted to all users. If, however, there is a 21st user, he/she is

not allowed access to the application.

Lease Timeout

Lease Timeout eliminates inactive users and frees leases for queued users.

Caution:
Changing license file information (that does not begin with X-) will invalidate the

license.

License

Parameter

Explanation

Product

Name

The name of the product. It is used to match licenses with

encoded files and therefore must match the Product Name

given to the encoded files.

When a license-check is performed, all licenses found in the

license directory are reviewed by a license-signature that

includes the product name.

Only a license that matches by product can determine license

rights and information.

Registered

To

The name of the licensee i.e. the registered owner. This data

(and other) is used to generate the license; it is included in the

array returned by the Zend Guard API on valid licenses.

75

Zend Guard User Guide

License Explanation

Parameter

Additional

Information

Used to store additional information in the license file.

Information placed here will be protected by Zend Guard's

digital signature technology. If this information is changed,

the license becomes invalid.

Information is stored in using the format 'directive = value'

 (e.g., Shareware=yes). These lines appear as text in the

license file and are accessed by the same means as accessing a

text file. In addition, if a license is valid, the Zend Guard API

function zend_loader_file_license returns an array containing

these values.

This information is used in conjunction with the function:

zend_loader_file_licensed() to implement customized

licensing rules. For example, you can disable certain features if

the "Shareware = yes" entry exists in the license file.

Note:

To store information that will NOT be protected by the digital

signature mechanism, begin the name of the directive with the

prefix: X-. For example, 'X-Create-On = December 28, 2006'.

Lines beginning with X- will be ignored when the license

signature is generated, however these lines will be returned by

zend_loader_file_license when the license file is determined

valid.

Lock to Zend

Host IDs

Locks a file to a specific Zend Host ID(s). This code uniquely

identifies a specific machine. Multiple entries should be

separated with spaces.

Limit to the

Following

IPs

Adds IP information, to bind the license to a specified IP or IP

range.

IPs can be specified as single IPs or a range by using wildcards,

for example:

10.1.1.17

10.1.*.*

10.1.255.255

10.1.3.0/24

Note: To specify multiple IPs use commas as separators.

76

Zend Guard

License Explanation

Parameter

Limit Number

of Concurrent

Limits the number of users who can simultaneously use the

application.

Developers can set the limit while writing the application. The

license is encoded and forms part of the encoded application file

given over to the client.

Concurrent User Settings:

Lease timeout - The maximum amount of time that the end-

user can leave the application idle before the license considers

him/her to have ceased use of the application and disconnects

the user from the application.

Prevent Access from Browsers With no Cookie Support -

Deny access from browsers without cookie support and display a

predefined error message. Browsers that do not have HTTP

cookie support cannot be detected by the Concurrent Users

mechanism.

Generally, you should use this setting with intranet applications

when access to the site deploying the application is limited and

you can control the users' browser settings. This will prevent

browsers without cookie support from access to the application.

The setting will cause a slight performance penalty on initial

access to the application. It is not generally noticeable in most

intranet environments unless the internet connection is slow.

You should not use this setting with internet applications when

access to the site deploying the application is unlimited and you

cannot control the users' browser settings.

When The Number of Concurrent Users Exceeds Limit

Options -Wait until a lease becomes available and/or display an

error message.

77

Zend Guard User Guide

License Files
A license file contains elements that control whether your product may run on the

end-users' machines, how many users may use the product simultaneously, and

on which machine or ID address, etc. The license File contains digitally signed

data, settings and user defined information.

Example 1:

Product-Name = Drink

Registered-To = Bob

IP-Range = 10.1.*.*

Hardware-Locked = Yes

Host-ID = H:MFM43-Q9CXC-B9EDX-GWYSU

Host-ID = M:3QNKS-WPDD5-B3WU6-EFVZH

Expires = 09-Oct-2005

Tea = Mint Flavor

X-Coffee = Black with no cream or sugar

Example 2:

Product-Name = My Product

Registered-To = ABC Company

Hardware-Locked = No

Host-ID = Not-Locked

Expires = Never

X-Home0 = Region 1 Priority

X-Home1 = Region 8 Dismissed

X-Home2 = Region 12 will update next run

X-NextAppointment = See X-Home0

X-LastAppointment = See X-Home1

X-PromptRemoder = Hire a Janitor

ViolatedMyLicenseRules = False

Example 3

Product-Name = HIJK_Intranet

Registered-To = HIJK Company

IP-Range = 10.1.*.*

Hardware-Locked = No

Host-ID = Not-Locked

Expires = 02-Jul-2002

X-UsersOnline = GinaK,RO,RowlingsC,Janice,Temp1,SysAdmin1

X-UnauthorizedCode = G5gH7^&*KkJ200 by User ICNeilW at 15:30

June1

78

Zend Guard

IllegalAccessDetected = False

HackerDetected = False

VirusDectected = False

Installing a License File
The following procedure describes how to install a license file that was generated

by Zend Guard on a user's machine. This procedure should be done as part of the

installation/transition from evaluation process of your application.

To install a license file:

1. Open the php.ini file in a text editor.

2. Locate the line with the directive zend_optimizer.license_path.

If a line for this directive does not exist, add a line to the php.ini

and type zend_optimizer.license_path=

3. If the path where the license file resides is not found on the

zend_optimizer.license_path directive-line (after the = sign),

add it to the end of the line. Remember to separate the paths with

a colon (for UNIX) or a semicolon (for Windows).

4. If your PHP is installed as SAPI/ISAPI, restart the Web-server for

the changes to take effect.

Note:

Placement of the license file is critical to the validation process. If the license

is not in the correct location, Zend Guard will assume that the product is

not-licensed. License validity and locations are checked and loaded when

PHP starts up.

79

Zend Guard User Guide

License Enforcement
License restrictions control the status of a license file. License files are

checked for validity when the PHP server starts. All valid license information

is then stored in the memory of the License Registry. Invalid licenses are

also registered. This allows the application to check for the type of error that

has occurred.

 For License File Enforcement files, the Zend Optimizer checks and then

allows or prohibits its running of the encoded file.

 For License API Enforcement files, you must program the call for a

license lookup using the Zend Guard API and implement your policy based

on whether a valid license is available or not.

80

Zend Guard

License File Location
The location of license file must be written into the php.ini file. This enables

it to be validated and loaded into the license registry if valid. Depending on

your setup you may need to restart the web server. For example: SAPI,

ISAPI configurations that run a persistent PHP module require restarting the

Web server to apply changes to the PHP engine.

Licenses are either valid or not-valid. The state "No license found" is

treated as an invalid license. Therefore, proper license installation is

necessary.

You can define specific files or license file directories to contain the license. If

you specify a license directory, all files with the file extension zl, are checked

for validity. If valid, they are loaded into the license registry, once, at the

startup of the PHP server.

Files encoded to check for valid licenses will check the license registry for a

license matching its product specification.

After updating the php.ini restart the server to apply changes for SAPI/ISAPI

configurations.

The directive in the php.ini file for license paths is

zend_optimizer.license_path. The syntax is as follows:

zend_optimizer.license_path=LicensePath1:LicensePath2

Where: LicensePath is the path to the file or directory holding the correct

license file. For UNIX, multiple paths are entered separated by colons (colon

delimited.) For Windows, multiple paths are entered separated by semicolon

(semicolon delimited.)
 Examples:

The following lines specify two license files (UNIX).

zend_optimizer.license_path=/usr/local/Zend/licenses/Lic.zl:/usr/local/Zend/licenses/Lic2

 The following line specifies one license file and a license folder (Windows).

zend_optimizer.license_path=C:\dir1;C:\dir2;C:\dir3\lic.zl

81

Zend Guard User Guide

Zend Host ID
The Zend Host ID is used to generate licenses locked to a specific machine

(hardware).

In order to obtain the Zend Host ID you must copy and run the zendid.exe

program on the machine for which the license is to be issued.

The zendid.exe program can be found with the files of the Zend Guard.

Getting the Zend Host ID

The following procedures describe how to get your Zend host ID in Windows

and Unix (includes Linux and Mac).

To get your Zend Host ID in Windows:

1. Copy the zendid.exe application to the users computer.

2. Open the Windows Start menu, select Run.

The Run dialog box will open.

• For Windows NT, 2000, or XP operating systems, type cmd and

click OK.

• For Windows 95, 98, or ME operating systems, type command

and click OK.

The DOS Command Shell will open.

3. In the shell application type zendid.exe and press ENTER.

The Zend Host IDwill be printed to the screen (as shown in the

example below).

4. Record the Zend Host ID code.

5. Click Exit and press ENTER.

The shell application will close.

Use this ID number to generate a license for a specific machine. To see how to

generate licenses see "Creating a License".

Example:

In this example the Host ID is- H:MFM43-Q9CXC-B9EDX-GWYSU In

the shell application type:

C:\WINDOWS\Desktop>zendid.exe

H:MFM43-Q9CXC-B9EDX-GWYSU

C:\WINDOWS\Desktop>

82

Zend Guard

To get your Zend Host ID in Unix:

1. Copy the zendid application to the users computer.

2. Open a terminal and run the command zendid.

The Zend Host ID prints to the screen as shown in the example

below.

3. Record the Zend Host ID code.

4. Click X in the upper corner of the active screen to close the shell

application.

Use this ID number to generate a license for a specific machine. To see how to

generate licenses see "Creating a License".

Example:

In this example the Host ID is- M:DRMTW-59QCX-B9EDX-12BM In the

shell application:

bash#./zendid

M:DRMTW-59QCX-B9EDX-12BM

bash#

83

Zend Guard User Guide

License Architecture and Behavior
The following topic describes how licenses are identified, what the changes are in

comparison to the previous version (Guard 4), license options, restrictions and

usage.

Run Flow

Software that is distributed with license restrictions depends on the Optimizer

component to enforce restrictions. When the Optimizer is loaded, it finds and

loads all the licenses (.zl files) in the license directory as specified in the

"zend_optimizer.license_path" directive (in your php.ini).

When a file is encoded with a license (using --license-product or sign-product) the

Optimizer tries to find a matching valid license.

There are certain conditions for a license to be valid.

It needs to be:

 Produced with the same private key that was used to encode the file.

 Have the same product name that was specified during the encoding.

Both restrictions must be satisfied. (Restrictions are checked on loading, so if

they have expired while the web-server was running, they will still be accepted.

Key Management

Up until Guard 5 (exclusive) private keys were produced by Zend, and were

written in the Guard License. When using an evaluation version (no license) the

application used a hard coded private key. However, this meant that in order to

produce a license for an application, the users had to use the same Guard license

that they used to encode the script. Moreover, when users upgraded the Guard

version, they had to contact Zend in order to get a license with the same private

key they had.

In Guard 5.0 private key was separated from the license by changing the license

generator (zendenc_sign) to support:

 Key generation

 Key extraction (from an old license)

 Support key verification

The result is that when encoding file, and producing a license, a key must be

specified.

84

Zend Guard

This change allows users to manage keys on their own, without the need to

contact Zend. Therefore, the Guard license is no longer part of the licensing

process.

For example: Users can now encode their files on one machine (using one Guard

license) and produce a license on other machine (using a different Guard license)

as long as they use the same key.

License Options

Guard offers two levels of licensing support:

1. License is requited (using --license-product switch)

2. License is supported (using --sign-product switch)

The difference is the script that requires a license will not run unless a valid

license is present. Script that supports a license will run without a valid license,

but, if a license is present, it can be accessed (using the Optimizer API functions).

This enables you to define your own restrictions.

For example: An application can be made to run in evaluation mode without a

license, in limited mode, with one type of license and in full mode with another.

License Restrictions

Guard licenses can be enforced based on the following categories:

 Date

 Concurrent Users

 IP Range

 ZendID (unique code based on the machine hardware)

In addition, users can add custom fields (in key=value format), and write

restriction code.

85

Zend Guard User Guide

Usage

The following procedure describes how to encode a project using a private key:

If you do not have a valid private key file, generate/extract one first before

encoding your project.

To encode a project using a private key:

1. Use --genenckey <path_to_key_file> to generate a Key or --

extractkey <license_file> <path_to_key_file> to extract a key.

2. Encode the application with the desired Licensing support.

3. Specify the path to your private key. (for example, zendenc --

license-product foo --private-key myKey foo.php foo.enc.php).

4. Generate the license (zendenc_sign myLic myKey. This will run a

textual wizard)

5. Copy the license to the license path (defined in the php.ini file)

6. Restart the web server to load the license

The files will be encoded with the restrictions set in the license.

Tips and Tricks

 To get a field from the license (for example, for custom limitation) use the

zend_loader_file_licensed API function

 To load license without the need to restart the web server use the

zend_loader_install_license API function

 License generator (zendenc_sign) usage can be found

[Zendenc_sign_usage here] (Or by running it with no parameters)

 Other API functions can be found [Optimizer_PHP_API_functions here]

 Other ini directives can be found [Zend_Optimizer%27s_Php.ini_directives

here]

86

Zend Guard

Command Line

The processes described in this section describe how to manually set

configurations for encoding and license generation.

Note:
The option to generate an XML configuration file was introduced to replace the

need to use the command line for encoding projects. Using the XML file option

instead of the command line creates a portable file containing your encoding and

license settings. This file can be easily distributed to other servers to provide a

unified way to quickly apply your preferences to multiple environments.

Depending on user preferences, encoding and license generation can be done

using the command-line to run the following commands inside the command

shell.

 zendenc

The command-line version of Zend Guard for encoding PHP 4 files. (PHP 5

can be used as long as they are PHP 4 compatible i.e. do not use the new

features introduces in PHP5).

 zendenc5

The command-line version of Zend Guard for encoding PHP 5 files.

 zendenc_sign

The command-line version of Zend Guard's licensing tab for creating a

signature license file from a license definition file.

These binaries are located in the plugin called

"com.zend.guard.core.resources.<OS version>_5.0.x and can be referenced from

there.

The plugin is located in your installation directory under: <install_dir>\Zend\Zend

Guard -5.0.x\plugins\com.zend.guard.core.resources.<OS version>\resources.

zendenc and zendenc5 – Command Line
This section serves as a technical reference to the zendenc and zendenc5

commands.

87

Zend Guard User Guide

Command Description

Command zendenc + zendenc5

Synopsis Command-line function for encoding files.

Syntax 1 zendenc [options] SourceInputPath [EncodedOutputPath]

Arguments SourceInputPath

The path and/or file name of the source directory or file. This must

be a valid full or relative path. This is a mandatory argument for

all encoding operations. The command line syntax requires the

SourceInputPath parameter precede the EncodedOutputPath

parameter.

EncodedOutputPath

The path and/or file name of the target file name where the

encoded file is written. This must be a valid full or relative path.

This argument is not required for encoding operations using the --

delete-source and --rename-source options.

The command line syntax requires the EncodedOutputPath

parameter (when used) is entered following the SourceInputPath

parameter.

--optionx [option_parameterx]

Various options can be entered to control the functionality of

zendenc.

Options may have parameters that immediately follow the option.

Every option must be preceded by a double dash -- prefix

Command Option - Syntax

Syntax Description

--optimizations

opt_mask

Optimization mask. (default value: [+++++++])

opt_mask is an integer representing a bit-mask.

The default value enables all of the optimization passes.

Each optimization pass of the Zend Optimizer can be turned

on or off based on the mask entered.

--encoded-only Force cooperation with other encoded files only. This option

generates files that work exclusively with associated

encoded files. Associated encoded files are those generated

by the same company. Files that do not share the same

encoded company association cannot call these files.

88

Zend Guard

--asp-tags

on/off

Turn ASP tag (“<%”) recognition on/off. (default: off). On

or off must be specified as an argument when using this

option.

The default, when this option is not used in the command-

line, is - off.

--short-tags

on/off

Turns short PHP tag (“<?”) recognition either on or off.

On or off must be specified as an argument when using this

option.

The default, when option is not used in the command-line,

is - on.

--no-header Disables the PHP-compatible header that is added to the

top of every encoded file by default. Encoded files

generated with this option will not display a meaningful

error when loaded by PHP that doesn't have the Zend

Optimizer properly installed. Using this option saves

approximately 1.5KB for every encoded file. Do not use it

unless disk space constraints are critical.

--prolog-

filename <file>

Embed the information in the specified file into the header

of the encoded file (overrides --no-header)

--delete-source Permanently deletes (see warning below) the original

source files specified in the SourceInputPath and saves the

encoded files in its place.

This option has no option parameter.

When this option is use, do not use the output_file

parameter.

Warning:

To avoid permanent loss of non-encoded scripts, make a

backup. Deleted files cannot be restored or recovered and

will be permanently deleted with this option. If you are

unsure about deleting the source files, use the ––rename-

source option instead.

--rename-source

<ext>

Move the original source file to <input_file>.<ext> and

save the encoded file in its place. The output_file

parameter should not be specified when using this option.

--recursive Encode files in directories, recursively. input_file and

output_file are the source and target directory names.

--php-only In recursive mode, don't copy non-PHP files from the

89

Zend Guard User Guide

source to the target.

--ignore-file-

modes

Do not preserve ownership, permissions and timestamps

for encoded files (preserved by default).

--include-ext

<ext>

Encode files with this extension in recursive mode. By

default, the following extensions are encoded: inc php ihtml

php3 php4.

This option can be entered more than once to include

multiple files.

ext is the file extension of the files, which will be included in

the encoding source files.

--exclude-ext

<ext>

Used in conjunction with the --recursive option to remove

file extensions from the default extensions This option can

be entered more than once to exclude multiple files.

ext is the file extension of the files, which will be excluded

from the encoding source files.

Don't encode files with this extension in recursive mode.

--exclude-file

<name>

Don't encode this file in recursive mode. File should be

FULL PATH !!!

--no-default-

extensions

Don't automatically use the predefined extensions. Only

extensions added with --include-ext will be encoded.

--ignore

<pattern>

Files matching this pattern will be ignored in recursive

mode. Default pattern list: [empty]

This option can be entered more than once for ignoring

multiple files and can be used to ignore a subfolder by

specifying the full path in recursive mode.

--ignore-errors Continue encoding additional files even if encoding one of

the files fails in recursive mode.

Used when encoding multiple files. If an encoding error

occurs while encoding a file, the Zend Guard continues

processing the other files.

--quiet Reports names and errors only. Does not report the

progress of the encoding or messages other than errors.

This option does not have an option parameter.

--silent Reports errors only. Does not report names, progress, or

messages other than errors.

This option does not have an option parameter.

--force-encode Allow encoding previously encoded files. (NOT

90

Zend Guard

recommended!)

--expires <yyyy-

mm-dd>

Make an encoded file to expire on the given date. Date is in

yyyy-mm-dd format.

--license-

product <name>

Encodes files to only work with a valid license for the

ProductName specified (encoded into a signature).

ProductName must exactly match the Product Name

entered when generating a license.

This is the same as the License file restriction setting.

--sign-product

<name>

Encode files with the product name signature. Same as the

Support Licensing feature, which works with the Zend

Guard API function to identify if a valid license exists.

(Scripts check for this signature.)

ProductName must exactly match the Product Name

entered when generating a license.

--use-crypto Cryptographically sign scripts to prevent unauthorized

modification.

--obfuscation-

level <lvl>

Set the default obfuscation level. The default is 0 - no

obfuscation

--export-list

<file>

The file that holds the function obfuscation export list. (The

file format is one function name per line)

--export-

candidates

<file>

Create list of functions recommended for exporting in this

file.

--export-php Automatically export all internal (PHP) functions.

--help Displays help about encoding options.

This option is entered as follows:

zendenc --help

--symlinks Copy symlinks as symlinks, do not try to resolve them.

--private-key

<file>

encodes files with the private key in <file> The file should

look like: Company-Key = <private key>

--obfuscate-

stats

Obfuscation

statistics

Result is like 1/16 3/15 1/1 3/15. The groups are: variables

functions classes methods. Each group has form of X/Y,

where Y is the total count of these entities, and X is how

many of them were not obfuscated. For variables, it means

how many of the functions were not obfuscate, i.e. 1/16

means that 1 of 16functions were not obfuscated with level

1. For others, it means how many names weren't

91

Zend Guard User Guide

obfuscated - i.e. 3/15 means 3 of 15 functions, 1/1 means

1 of 1 classes and 3/15 means 3 of 15 methods (Note -

functions include methods).

zendenc - Command Line Examples
The following are examples, which use the command-line zendenc and its

options. Each begins with the command line and is followed by an explanation of

its results.

Example 1

/usr/local/Zend/zendenc ––quiet /WorkFolder/mysource.php

/EncodedFolder/myencoded.php

Result: The file /WorkFolder/mysource.php is used as the source of

the encoded PHP file myencoded.php. During encoding, only errors are

reported. The output is an encoded file written to /Encoded

Folder/myencoded.php. The source file remains unchanged.

Example 2

/usr/local/Zend/zendenc --rename-source old

/WorkFolder/ReplaceMe.php

Result: The /WorkFolder/ReplaceMe.php file is renamed by adding

“.old” as a file extension. The new name of the source file is

ReplaceMe.php.old.

Output is an encoded file written to the same name as the original

source file.

The result is file /WorkFolder/ReplaceMe.php is an encoded file and the

file /WorkFolder/ReplaceMe.php.old is the un-encoded source.

Example 3

/usr/local/Zend/zendenc --delete-source /WorkFolder/mysource.php

Result: The file /WorkFolder/mysource.php is used as the source then

deleted and is replaced by an encoded file of the same name.

The result is that the file /WorkFolder/mysource.php is an encoded file

and the original un-encoded content has been deleted.

Example 4

/usr/local/Zend/zendenc --asp-tags on mysource.php myencoded.php

Result: The file /WorkFolder/mysource.php is used as the PHP and

92

Zend Guard

ASP source file to be encoded. ASP tags are encoded along with the

PHP thanks to the fact that ASP tags are treated ad PHP code. The

resulting output is an encoded file written to /Encoded

Folder/myencoded.php The source file remains unchanged.

Example 5

/usr/local/Zend/zendenc --short-tags on --expires 2005-01-01 --

recursive --ignore-errors --license-product SuperWebGame --include-

ext htm --exclude-ext phtml –-ignore ”a*” /WorkFolder1/

/WorkFolder2/

Result: Encodes files in /WorkFolder1/ and below with the file

extensions: inc php htm php3 php4 but not phtml or files beginning

with the letter “a”. Encoding will be processed for short tags and each

encoded file will both expire on Jan. 01 2005 and will require a valid

license for the product name SuperWebGame to work. The output files

and any sub structures will be written to /WorkFolder2/. Lastly, the

encoding will continue to process all files and will not stop the encoding

process because of encoding errors.

Creating a Signature License (Command Line)
Signature license files work in conjunction with the following encoded files:

Require Valid License or Licensing Support. In addition, they must be

encoded from the same product.

This can be an encoded file created by the Zend Guard user interface, or an

encoded file generated by zendenc with the --license-product or --sign-

product options.

There are two ways to create a signed license file:

 Create a License Definition File, and run zendenc_sign <lic_def_file>

<signed_file>

 Run zendenc_sign <signed_file>. The signing utility will then prompt you

to type in the license information.

93

Zend Guard User Guide

License Definition File

The following table lists the license definition parameters, a short description,

rank, and required status, as well as examples. All of the following are case

sensitive. Every line has to be written in the format:

Entry = Value

(The format is a single space before the equal sign and another one after the

equal sign). The order of definitions will be a permanent part of the signature.

This means the lines of the license file must maintain the same sequence. If the

order of the definitions in the license file changes from what the signature

contains, the license becomes invalid. Definition Files can be created in text

editors, such as Microsoft Notepad or VI.

Field Name Description

Product-Name The name assigned to Product. This must be the same

name used when encoding the PHP files.

REQUIRED

Example:

Product-Name = Drink

Registered-To The Name of the Registered owner of the license.

REQUIRED

Example:

Registered-To = Bob

Expires Expiration date of the license. Used if the license is issued

with a date restriction.

Format:

DD-MM-YYYY

OPTIONAL

Example:

Expires = 09-Oct-2005

IP-Range

Limits the use of the license to IP addresses that fall within

specification. Supports wildcards for any of the IP place

holders, as well as the two types of net masks (filters).

Netmask pair An IP a.b.c.d, and a netmask w.x.y.z. (That

is., 10.1.0.0/255.255.0.0), where the binary of mask is

applied to filter IP addresses.

ip/nnn (similar to a CIDR specification) This mask consists

of nnn high-order 1 bits. (That is, 10.1.0.0/16 is the same

94

Zend Guard

as 10.1.0.0/255.255.0.0). Instead of spelling out the bits of

the subnet mask, this mask notation is simply listed as the

number of 1s bits that start the mask. Rather than writing

the address and subnet mask as

192.60.128.0/255.255.252.0 the network address would be

written simply as: 192.60.128.0/22 which indicates starting

address of the network and number of 1s bits (22) in the

network portion of the address. The mask in binary is

(11111111.11111111.11111100.00000000).

OPTIONAL

Example (Wildcard):

IP-Range = 10.1.*.*

Example (Net Mask):

IP-Range = 10.1.0.0/255.255.0.0

Example (Net Mask):

IP-Range = 10.1.0.0/16

Host-ID Coded string (Zend Host ID) used to lock the license to a

specific hardware. The Zend Host ID obtained from the

machine where the encoded files and license are to be

installed. The Zend Host ID code can be obtained by using

the zendid utility. For more details, see Getting the Zend

Host ID on page 47.

REQUIRED if Hardware-Locked is set equal to YES.

Meaningless if Hardware-Locked is set equal to NO.

Example:

Host-ID = H:MFM43-Q9CXC-B9EDX-GWYSU

Hardware-

Locked

[YES | NO] option that indicates if the license will be locked

to a specific machine using the Zend Host ID code(s). If set

to YES, the Host-ID is required.

REQUIRED

Example:

Hardware-Locked = YES

UserDefinedField OPTIONAL

Example:

Tea = Mint Flavor

X-

UserDefinedField

User defined field prefixed with X-. Any additional

information, which the user would like to add to the license

95

Zend Guard User Guide

file but not to the signature. This information allows

flexibility of input both prior to generating the signature

and after. Any change to this information in the signature

license-file will have no impact on the validity of the

license.

OPTIONAL

Example:

X-Coffee = Black with no cream or sugar

zendenc_sign – Command
This section serves as a technical reference to the zendenc_sign command.

Command zendenc_sign

Synopsis Command-line function for creating a signature license file from

a license definition file.

Syntax 1 zendenc_sign LicenseDefinitionFile LicenseFileName

Arguments LicenseDefinitionFile - The file containing the source names and

information in an equation format, FieldName = FieldValue (for

more information on how to create a license definition file, see

License Definition File in the preceding section)

LicenseFileName - The name and extension to be given to the

generated signature license file.

The zendenc_sign Commands are:

--version - get version number.

--genenckey <path_to_key_file> - generate user key for the

Encoder put the private key in <path_to_key_file>.

--extractkey <license_file> <path_to_key_file> - take the

private key from <license_file> put the private key in

<path_to_key_file>.

--verify <license_file> <path_to_key_file> - check if the

license in <license_file> is good for the private key.

[source_file] result_file <path_to_key_file> - signs

<result_file> license file with optional paramter file

<source_file>, with the private key in <path_to_key_file>.

96

Zend Guard

The following is an example of a License file:

Example Signature License File:

Registered-To = ABC Company

Hardware-Locked = No

Host-ID = Not-Locked

Expires = Never

X-Home0 = Region 1 Priority

X-Home1 = Region 8 Dismissed

X-Home2 = Region 12 will update next run

X-NextAppointment = See X-Home0

X-LastAppointment = See X-Home1

X-PromptRemoder = Hire a Janitor

ViolatedMyLicenseRules = False

Verification-Code =

wCcJ6mJMYH7vggYkS3m+3/dUL332aHRy0xtYnc55CC

TCtcxWXvuU5lOG4w==

97

Zend Guard User Guide

Zend Guard API

With the Zend Guard API, you can complete the following tasks:

 Check if Zend Optimizer is enabled to handle encoded files.

 Check if a valid license exists and gather information from a valid license.

 Get the running files path at runtime.

The following API describes how the Zend Guard determines if encoding

is enabled:

Name zend_loader_enabled

Synopsis Checks the Zend Optimizer's configuration to verify that it is

configured to load encoded files.

Note:

Zend Optimizer setting can be configured in the php.ini file.

Enable Optimizer line syntax: zend_optimizer.enable_loader =

on|off.

By default, this is set to On. Therefore, you do not have to make

any changes for the Optimizer to run encoded scripts.

Syntax zend_loader_enabled()

Results Returns Boolean

TRUE The Optimizer is configured to load encoded files.

FALSE The Optimizer is not configured to load encoded files.

Name zend_get_id

Synopsis Returns array of the host ids. If all_ids is true, then all IDs are

returned, otherwise only IDs considered "primary" are returned.

Syntax array zend_get_id([bool all_ids = false])

98

Zend Guard

The following API describes how the Zend Guard checks if a valid license

exists:

Name zend_loader_file_licensed

Synopsis Compares the signature of the running file against the signatures

of the License files loaded by the php.ini file into the License

Registry. If a valid license file exists, the values of the license file

are read into an array.

If a valid license does not exist or is not specified in the php.ini, it

will not be entered in the PHP server's license registry.

If a valid license, matching in product and signature cannot be

found in the license directory, an array is not created.

For information on the proper installation of a license file as well

as the php.ini directive, see Limiting the Number of Concurrent

Users: Proper Use of Cookies

When the "Require Cookies" option is NOT selected, any page can

be loaded, once, from any number of browsers concurrently even

when the number of concurrent users is limited (even to a single

user).

This happens because, the first time that the page is accessed no

cookie is present. The second time that the page is accessed, a

cookie *is* present (even though not required). The server then

limits access.

In addition, if the "Require Cookies" option is NOT selected, AND

the browser is set to not receive cookies, any page can be

loaded, any number of times, from any number of browsers.

This happens because no cookie is present at any time. The

server has no way to know that the page has been accessed.

In order to effectively limit the number of concurrent users, you

must require cookies.

Syntax $lic_info = zend_loader_file_licensed().

Results Returns an array or FALSE array.

If an array is returned, a valid license exists in the location

indicated in the php.ini file and for the product. The array has an

element for each line of the license file. This includes the license

generation settings and any additional user information added to

the license.

Example from a license file:

99

Zend Guard User Guide

Name zend_loader_file_licensed

Product-Name = My Product

The array index names are the line content from the left side of

the equations (Product-Name) within the license file text.

The array values are the text content to the right or the equation

(My Product.

FALSE

"False" means that no valid license was found. This can mean that

no license exists in the license directory or that the license file

exists and has become invalid or corrupted.

Name zend_loader_install_license

Synopsis Dynamically loads a license for applications encoded with Zend

Guard. The Override controls if it will override old licenses for the

same product.

Syntax boolean zend_loader_install_license(string license_file[, bool

override])

The following APIs describe how Zend Guard checks for obfuscation:

Name zend_loader_current_file

Synopsis Obtains the full path of the currently running file at run-time, in

other words, the path of the file calling this API function.

Does not evaluate the running files path during encoding, but

evaluates only at run-time.

Syntax zend_loader_current_file()

Results Returns a string containing the full path of the currently running

file.

Name Zend_obfuscate_function_name

Synopsis Obfuscate and return the given function name with the internal

obfuscation function.

Syntax string obfuscate_function_name(string function_name)

Results Returns the obfuscated form of the given string.

100

Zend Guard

Name Zend_obfuscate_class_name

Synopsis Obfuscate and return the given class name with the internal

obfuscation function.

Syntax string obfuscate_class_name(string class_name)

Results Returns the obfuscated form of the given string.

Name zend_loader_file_encoded

Syntax boolean zend_loader_file_encoded()

Results Returns true if the current file is a Zend-encoded file.

Name zend_current_obfuscation_level

Syntax int zend_current_obfuscation_level()

Results returns the current obfuscation level support (set by

zend_optimizer.obfuscation_level_support)

Name zend_runtime_obfuscate

Syntax bool zend_runtime_obfuscate()

Results Start runtime-obfuscation support that allows limited mixing of

obfuscated and un-obfuscated code.

101

Zend Guard User Guide

FAQ

This section contains Frequently Asked Questions and answers regarding

encoding and encoded files. Additional FAQ and Support can be obtained at the

Zend Website (www.zend.com).

Contents:

 Can encoded and non-encoded PHP files be used together?

 Will using encoded files (instead of source files) change run-time speed or

file size?

 When I try to run an encoded file, error messages are displayed. Why?

 Can Zend Intermediate Code files be de-coded back into the PHP source

file?

 Do my clients need to install anything to run Zend-encoded files?

 What if my script is dependent on library file?

 My scripts use "include_path" or "auto_prepend". Can I encode them

without modification?

 How do I check if a file is encoded?

 Is it possible to generate licenses for an encoded project on a different

machine than the machine the project was encoded with?

 Is it possible to use two systems one to encode and the other to generate

licenses (for the project encoded on the separate machine)?

 Why are certain files are not being encoded?

 What Optimizer and PHP version should I use?

Can encoded and non-encoded PHP files be used together?

Yes. Encoded and non-encoded PHP files, in most instances, can be used

together transparently. The only exception is files which were encoded using the

“Work Exclusively with Encoded Files” option. These files will only work with

encoded files that were encoded by the same company.

Obfuscated files however, can have problem running together with non-

obfuscated scripts, if functions or classes defined in one script are called from

another script. Such scripts should be both obfuscated or both non-obfuscated, or

classes or functions that are called across the "obfuscation border" should be

exported.

To temporarily replace obfuscated script with non-obfuscated one and you still

want to call the functions and classes in the script, you can use

102

Zend Guard

zend_runtime_obfuscate() function - however this function may impact

performance so it is not recommended as a permanent solution.

Will using encoded files (instead of source files) change run-time speed
or file size?

There might be some speed gain because the compilation stage is saved on every

run of the script, however, speed improvements, if any, are dependent on the

nature of the script.

The size of an encoded file might be somewhat smaller or larger than the source

file, but this too is dependent on the nature of the script. The factors that tend to

improve run-time speed are not necessarily the same as those that tend to

decrease file size.

When I try to run an encoded file, error messages are displayed. Why?
The most common cause of error messages and failure is incompatibility, either

with the PHP version, or with the Zend Intermediate Code file (that is, with the

version of the Zend Guard that encoded the file). For additional information, see

the “Avoiding Incompatibilities” section in the Zend Optimizer User Guide.

Can Zend Intermediate Code files be de-coded back into the PHP source
file?

Obfuscation like encryption can only be decoded using brut-force techniques.

Such techniques typically require vast amounts of time and resources to decode

obfuscated strings. Furthermore, the longer the obfuscated string is the less

realistic it is to decode these strings as the number of possible combinations

increases exponentially. Therefore, it is not feasible that Obfuscated files will not

be successfully de-coded.

Do my clients need to install anything to run Zend-encoded files?
Yes, they need to install the Zend Optimizer as part of their PHP setup. The Zend

Optimizer is available as a freeware download from:

http://www.zend.com/products/zend_optimizer.

What if my script is dependent on library file?
Files that are include()’d or require()’d in the script must be present at run time

and will not be part of the encoded file. Both the encoded file and the library files

should be shipped together. Such files can be either encoded or non-encoded –

both file types can be used together transparently.

Note:

If “Work Exclusively with Encoded Files” is used the library files must also be

encoded by the same company.

103

Zend Guard User Guide

Keeping certain files as plain text can be useful if you wish to let users customize

parts of the application.

However when obfuscating files there may be a problem running non-obfuscated

scripts, if functions or classes defined in one script are called from another script.

Such scripts should be both obfuscated or both non-obfuscated, or classes or

functions that are called across the "obfuscation border" should be exported.

To temporarily replace obfuscated script with non-obfuscated one and you still

want to call the functions and classes in the script, you can use

zend_runtime_obfuscate() function - however this function may impact

performance so it is not recommended as a permanent solution.

My scripts use include_path or auto_prepend. Can I encode them without
modification?
Yes. Since each file is encoded separately, all include()’s take place at run-time

and therefore, do not interfere with the Zend Guard.

How do I check if a file is encoded?

You can use a PHP script with the API: boolean zend_loader_file_encoded() to

check if the file is encoded.

Zend encoded files return = true.

Is it possible to generate licenses for an encoded project on a different
machine than the machine the project was encoded with?
Yes, as long as the Guard license is good for both machines, since the license

generator would require a license to run.

Is it possible to use two systems one to encode and the other to generate
licenses (for the project encoded on the separate machine)?

Yes, if both Host IDs are allowed in the generated license

Why are certain files are not being encoded?
It could be that your file has the same name as a general pattern in the ignore

list. To solve this select the file and in the General settings tab click "Override

Project Configuration. This will remove the resource from the list of patterns to

ignore. Repeat if other files fall under the same category of the general pattern

for example; if the pattern to ignore is 'test*.php' the file 'contest.php' will also

be ignored. Alternatively, refine the patterns you want to ignore in the exclude

tab.

What Optimizer and PHP version should I use?

Make sure to use the correct Optimizer and PHP versions as follows:

 Zend Guard 5.0 with PHP 5.X requires Zend Optimizer 3.3.x and above

104

Zend Guard

 Zend Guard 5.0 with PHP 4.X requires Zend Optimizer 2.6+ for encoding

only or Zend Optimizer 3.0+ for obfuscation support

 PHP Compatibility: supported PHP versions: 4.2.x through 5.2.x

105

Index

A

Additional Information 64

Allowed IP................................. 64

Attribute................................... 64

C

Can encoded and non-encoded PHP

files be used together?............. 97

Concurrent Users 64

Cookie Support.......................... 64

Cookies 64

I

IP .. 64

L

Lease Timeout 64

License..................................... 64

Limit .. 64

Limit Exceeded 64

Limit Number of Concurrent......... 64

Limit to the Following IPs 64

Lock to Zend Host IDs................. 64

P

Product Name............................ 64

R

Registered To 64

Require Cookies 64

Z

Zend Guard API 64

Zend Guard License 64

Zend Guard Toolbar.................... 64

Zend Host ID 64

Zend_loader_file_license 64

107

		Contribute to the Documentation

		Zend Guard

		 Contribute to the Documentation

		 Introduction

		 Installing Zend Guard

		System Requirements

		Version Compatibility

		 Extracting the Standalone Zend Guard

		 Launching Zend Guard

		 Registering Zend Guard

		 Zend Guard Features

		Encoding

		 Obfuscation

		Licensing

		 Workspace Overview

		 Guard Explorer

		 Project Area

		 Monitoring Area

		 Menu Options

		Zend Guard Main Menu

		 Zend Guard Toolbar

		Right-Click Menu Options

		Projects

		Folders

		 Files

		 Working with Zend Guard

		 Getting Started

		Modifying Project Contents

		 Basic Tutorial

		Scan Feature

		Exclude List

		 Secure the Project

		 Preferences

		 Source Options

		 Overriding Project Preferences

		 Configuring the Integration with Zend IDE

		 Importing an Existing Project

		 Path Variable Preferences

		 Editing Path Variables

		Tabs

		 Overview Tab

		General Options

		 Source Options

		 Security Tab

		 Exclude Tab

		Scanning Code

		Adding Entities Manually

		 Importing and Exporting Exclude Lists

		 Removing Content from the Exclude List

		 Excluding PHP Entities

		Functions Referenced via a Variable

		Functions Passed via Arguments

		Functions Implementing External Interfaces

		Functions Used as Object Callbacks

		Classes

		Autoloading Classes

		Exclude Application APIs

		 Header Tab

		 XML Editing Tab

		 Encoding External code using the XML File

		 Encoding

		Encoding

		Expedited at Run-time

		Secure

		License Requirements

		No Obfuscation

		How to Encode

		Messages Area

		Output

		Distributing Encoded Files

		Editing Encoded Files

		Manual Encoding

		Usage

		Schema

		Obfuscation

		Encoding Only

		Variable Obfuscation

		Function Obfuscation

		 Testing and Debugging Applications

		Licenses

		Creating a License

		Cookie Support

		 Limit Number of Concurrent Users

		Lease Timeout

		 License Files

		Installing a License File

		 License Enforcement

		 License File Location

		 Zend Host ID

		Getting the Zend Host ID

		 License Architecture and Behavior

		Run Flow

		Key Management

		License Options

		License Restrictions

		 Usage

		Tips and Tricks

		 Command Line

		zendenc and zendenc5 – Command Line

		 Command Description

		Command Option - Syntax

		zendenc - Command Line Examples

		Creating a Signature License (Command Line)

		 License Definition File

		zendenc_sign – Command

		 Zend Guard API

		 FAQ

		Index

		

		

